skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Manners, Freddie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The entropic doubling of a random variable taking values in an abelian group is a variant of the notion of the doubling constant of a finite subset of , but it enjoys somewhat better properties; for instance, it contracts upon applying a homomorphism. In this paper we develop further the theory of entropic doubling and give various applications, including: (1) A new proof of a result of Pálvölgyi and Zhelezov on the “skew dimension” of subsets of with small doubling; (2) A new proof, and an improvement, of a result of the second author on the dimension of subsets of with small doubling; (3) A proof that the Polynomial Freiman–Ruzsa conjecture over implies the (weak) Polynomial Freiman–Ruzsa conjecture over . 
    more » « less
    Free, publicly-accessible full text available July 31, 2025
  2. Abstract A transversal in an latin square is a collection of entries not repeating any row, column, or symbol. Kwan showed that almost every latin square has transversals as . Using a loose variant of the circle method we sharpen this to . Our method works for all latin squares satisfying a certain quasirandomness condition, which includes both random latin squares with high probability as well as multiplication tables of quasirandom groups. 
    more » « less