Abstract We address a special case of a conjecture of M. Talagrand relating two notions of “threshold” for an increasing family of subsets of a finite setV. The full conjecture implies equivalence of the “Fractional Expectation‐Threshold Conjecture,” due to Talagrand and recently proved by the authors and B. Narayanan, and the (stronger) “Expectation‐Threshold Conjecture” of the second author and G. Kalai. The conjecture under discussion here says there is a fixedLsuch that if, for a given , admits withand(a.k.a.  isweakly p‐small), then admits such a taking values in ( is‐small). Talagrand showed this when is supported on singletons and suggested, as a more challenging test case, proving it when is supported on pairs. The present work provides such a proof. 
                        more » 
                        « less   
                    
                            
                            Sumsets and entropy revisited
                        
                    
    
            Abstract The entropic doubling of a random variable taking values in an abelian group is a variant of the notion of the doubling constant of a finite subset of , but it enjoys somewhat better properties; for instance, it contracts upon applying a homomorphism. In this paper we develop further the theory of entropic doubling and give various applications, including: (1) A new proof of a result of Pálvölgyi and Zhelezov on the “skew dimension” of subsets of with small doubling; (2) A new proof, and an improvement, of a result of the second author on the dimension of subsets of with small doubling; (3) A proof that the Polynomial Freiman–Ruzsa conjecture over implies the (weak) Polynomial Freiman–Ruzsa conjecture over . 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1926686
- PAR ID:
- 10535327
- Publisher / Repository:
- Wiley Periodicals
- Date Published:
- Journal Name:
- Random Structures & Algorithms
- ISSN:
- 1042-9832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The elementary method of Balog and Ruzsa and the large sieve of Linnik are utilized to investigate the behaviour of the norm of an exponential sum over the primes. A new proof of a lower bound due to Vaughan for the norm of an exponential sum formed with the von Mangoldt function is furnished.more » « less
- 
            LetE \subseteq \mathbb{R}^{n}be a union of line segments andF \subseteq \mathbb{R}^{n}the set obtained fromEby extending each line segment inEto a full line. Keleti’sline segment extension conjectureposits that the Hausdorff dimension ofFshould equal that ofE. Working in\mathbb{R}^{2}, we use effective methods to prove a strong packing dimension variant of this conjecture. Furthermore, a key inequality in this proof readily entails the planar case of the generalized Kakeya conjecture for packing dimension. This is followed by several doubling estimates in higher dimensions and connections to related problems.more » « less
- 
            Santhanam, Rahul (Ed.)The recent breakthrough of Limaye, Srinivasan and Tavenas [Limaye et al., 2022] (LST) gave the first super-polynomial lower bounds against low-depth algebraic circuits, for any field of zero (or sufficiently large) characteristic. It was an open question to extend this result to small-characteristic ([Limaye et al., 2022; Govindasamy et al., 2022; Fournier et al., 2023]), which in particular is relevant for an approach to prove superpolynomial AC⁰[p]-Frege lower bounds ([Govindasamy et al., 2022]). In this work, we prove super-polynomial algebraic circuit lower bounds against low-depth algebraic circuits over any field, with the same parameters as LST (or even matching the improved parameters of Bhargav, Dutta, and Saxena [Bhargav et al., 2022]). We give two proofs. The first is logical, showing that even though the proof of LST naively fails in small characteristic, the proof is sufficiently algebraic that generic transfer results imply the result over characteristic zero implies the result over all fields. Motivated by this indirect proof, we then proceed to give a second constructive proof, replacing the field-dependent set-multilinearization result of LST with a set-multilinearization that works over any field, by using the Binet-Minc identity [Minc, 1979].more » « less
- 
            Abstract We prove the uniform oscillation and jump inequalities for the polynomial ergodic averages modeled over multi-dimensional subsets of primes. This is a contribution to the Rosenblatt–Wierdl conjecture (Lond Math Soc Lect Notes 205:3–151, 1995, Problem 4.12, p. 80) with averages taken over primes. These inequalities provide endpoints for ther-variational estimates obtained by Trojan (Math Ann 374:1597–1656, 2019).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    