skip to main content


Search for: All records

Creators/Authors contains: "Mao, Zhiqiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. Abstract

    Rare-earth monopnictides are a family of materials simultaneously displaying complex magnetism, strong electronic correlation, and topological band structure. The recently discovered emergent arc-like surface states in these materials have been attributed to the multi-wave-vector antiferromagnetic order, yet the direct experimental evidence has been elusive. Here we report observation of non-collinear antiferromagnetic order with multiple modulations using spin-polarized scanning tunneling microscopy. Moreover, we discover a hidden spin-rotation transition of single-to-multiple modulations 2 K below the Néel temperature. The hidden transition coincides with the onset of the surface states splitting observed by our angle-resolved photoemission spectroscopy measurements. Single modulation gives rise to a band inversion with induced topological surface states in a local momentum region while the full Brillouin zone carries trivial topological indices, and multiple modulation further splits the surface bands via non-collinear spin tilting, as revealed by our calculations. The direct evidence of the non-collinear spin order in NdSb not only clarifies the mechanism of the emergent topological surface states, but also opens up a new paradigm of control and manipulation of band topology with magnetism.

     
    more » « less
  3. Abstract

    Achieving spin-pinning at the interface of hetero-bilayer ferromagnet/antiferromagnet structures in conventional exchange bias systems can be challenging due to difficulties in interface control and the weakening of spin-pinning caused by poor interface quality. In this work, we propose an alternative approach to stabilize the exchange interaction at the interface of an uncompensated antiferromagnet by utilizing a gradient of interlayer exchange coupling. We demonstrate this exchange interaction through a designed field training protocol in the odd-layer topological antiferromagnet MnBi2Te4. Our results reveal a remarkable field-trained exchange bias of up to ~ 400 mT, which exhibits high repeatability and can be easily reset by a large training field. Notably, this field-trained exchange bias effect persists even with zero-field initialization, presenting a stark contrast to the traditional field-cooled exchange bias. The highly tunable exchange bias observed in this single antiferromagnet compound, without the need for an additional magnetic layer, provides valuable insight into the exchange interaction mechanism. These findings pave the way for the systematic design of topological antiferromagnetic spintronics.

     
    more » « less
  4. Abstract

    Effective control of magnetic phases in two-dimensional magnets would constitute crucial progress in spintronics, holding great potential for future computing technologies. Here, we report a new approach of leveraging tunneling current as a tool for controlling spin states in CrI3. We reveal that a tunneling current can deterministically switch between spin-parallel and spin-antiparallel states in few-layer CrI3, depending on the polarity and amplitude of the current. We propose a mechanism involving nonequilibrium spin accumulation in the graphene electrodes in contact with the CrI3layers. We further demonstrate tunneling current-tunable stochastic switching between multiple spin states of the CrI3tunnel devices, which goes beyond conventional bi-stable stochastic magnetic tunnel junctions and has not been documented in two-dimensional magnets. Our findings not only address the existing knowledge gap concerning the influence of tunneling currents in controlling the magnetism in two-dimensional magnets, but also unlock possibilities for energy-efficient probabilistic and neuromorphic computing.

     
    more » « less
  5. Free, publicly-accessible full text available December 27, 2024
  6. Abstract Nonlinear Hall effect (NLHE) is a new type of Hall effect with wide application prospects. Practical device applications require strong NLHE at room temperature (RT). However, previously reported NLHEs are all low-temperature phenomena except for the surface NLHE of TaIrTe 4 . Bulk RT NLHE is highly desired due to its ability to generate large photocurrent. Here, we show the spin-valley locked Dirac state in BaMnSb 2 can generate a strong bulk NLHE at RT. In the microscale devices, we observe the typical signature of an intrinsic NLHE, i.e. the transverse Hall voltage quadratically scales with the longitudinal current as the current is applied to the Berry curvature dipole direction. Furthermore, we also demonstrate our nonlinear Hall device’s functionality in wireless microwave detection and frequency doubling. These findings broaden the coupled spin and valley physics from 2D systems into a 3D system and lay a foundation for exploring bulk NLHE’s applications. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  7. Ferroelectricity in van der Waals (vdW) layered material has attracted a great deal of interest recently. CuInP2S6 (CIPS), the only vdW layered material whose ferroelectricity in the bulk was demonstrated by direct polarization measurements, was shown to remain ferroelectric down to a thickness of a few nanometers. However, its ferroelectric properties have just started to be explored in the context of potential device applications. We report here the preparation and measurements of metal-ferroelectric semiconductor-metal heterostructures using nanosheets of CIPS obtained by mechanical exfoliation. Four bias voltage and polarization dependent resistive states were observed in the current–voltage characteristics, which we attribute to the formation of ferroelectric Schottky diode, along with switching behavior.

     
    more » « less
    Free, publicly-accessible full text available October 2, 2024
  8. Abstract

    Dirac and Weyl semimetals are a central topic of contemporary condensed matter physics, and the discovery of new compounds with Dirac/Weyl electronic states is crucial to the advancement of topological materials and quantum technologies. Here we show a widely applicable strategy that uses high configuration entropy to engineer relativistic electronic states. We take theAMnSb2(A= Ba, Sr, Ca, Eu, and Yb) Dirac material family as an example and demonstrate that mixing of Ba, Sr, Ca, Eu and Yb at theAsite generates the compound (Ba0.38Sr0.14Ca0.16Eu0.16Yb0.16)MnSb2(denoted asA5MnSb2), giving access to a polar structure with a space group that is not present in any of the parent compounds.A5MnSb2is an entropy-stabilized phase that preserves its linear band dispersion despite considerable lattice disorder. Although bothA5MnSb2andAMnSb2have quasi-two-dimensional crystal structures, the two-dimensional Dirac states in the pristineAMnSb2evolve into a highly anisotropic quasi-three-dimensional Dirac state triggered by local structure distortions in the high-entropy phase, which is revealed by Shubnikov–de Haas oscillations measurements.

     
    more » « less
  9. Abstract

    There is tremendous interest in employing collective excitations of the lattice, spin, charge, and orbitals to tune strongly correlated electronic phenomena. We report such an effect in a ruthenate, Ca3Ru2O7, where two phonons with strong electron-phonon coupling modulate the electronic pseudogap as well as mediate charge and spin density wave fluctuations. Combining temperature-dependent Raman spectroscopy with density functional theory reveals two phonons,B2PandB2M, that are strongly coupled to electrons and whose scattering intensities respectively dominate in the pseudogap versus the metallic phases. TheB2Psqueezes the octahedra along the out of planec-axis, while theB2Melongates it, thus modulating the Ru 4d orbital splitting and the bandwidth of the in-plane electron hopping; Thus,B2Popens the pseudogap, whileB2Mcloses it. Moreover, theB2phonons mediate incoherent charge and spin density wave fluctuations, as evidenced by changes in the background electronic Raman scattering that exhibit unique symmetry signatures. The polar order breaks inversion symmetry, enabling infrared activity of these phonons, paving the way for coherent light-driven control of electronic transport.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024