Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Efficient contact tracing and isolation is an effective strategy to control epidemics. It was used effectively during the Ebola epidemic and successfully implemented in several parts of the world during the ongoing COVID-19 pandemic. An important consideration in contact tracing is the budget on the number of individuals asked to quarantine -- the budget is limited for socioeconomic reasons. In this paper, we present a Markov Decision Process (MDP) framework to formulate the problem of using contact tracing to reduce the size of an outbreak while asking a limited number of people to quarantine. We formulate each step of themore »Free, publicly-accessible full text available January 14, 2023
-
Abstract Infections produced by non-symptomatic (pre-symptomatic and asymptomatic) individuals have been identified as major drivers of COVID-19 transmission. Non-symptomatic individuals, unaware of the infection risk they pose to others, may perceive themselves—and be perceived by others—as not presenting a risk of infection. Yet, many epidemiological models currently in use do not include a behavioral component, and do not address the potential consequences of risk misperception. To study the impact of behavioral adaptations to the perceived infection risk, we use a mathematical model that incorporates the behavioral decisions of individuals, based on a projection of the system’s future state over amore »Free, publicly-accessible full text available December 1, 2022
-
The ongoing COVID-19 pandemic underscores the importance of developing reliable forecasts that would allow decision makers to devise appropriate response strategies. Despite much recent research on the topic, epidemic forecasting remains poorly understood. Researchers have attributed the difficulty of forecasting contagion dynamics to a multitude of factors, including complex behavioral responses, uncertainty in data, the stochastic nature of the underlying process, and the high sensitivity of the disease parameters to changes in the environment. We offer a rigorous explanation of the difficulty of short-term forecasting on networked populations using ideas from computational complexity. Specifically, we show that several forecasting problemsmore »Free, publicly-accessible full text available January 25, 2023
-
Abstract This research measures the epidemiological and economic impact of COVID-19 spread in the US under different mitigation scenarios, comprising of non-pharmaceutical interventions. A detailed disease model of COVID-19 is combined with a model of the US economy to estimate the direct impact of labor supply shock to each sector arising from morbidity, mortality, and lockdown, as well as the indirect impact caused by the interdependencies between sectors. During a lockdown, estimates of jobs that are workable from home in each sector are used to modify the shock to labor supply. Results show trade-offs between economic losses, and lives savedmore »Free, publicly-accessible full text available December 1, 2022
-
We study the role of vaccine acceptance in controlling the spread of COVID-19 in the US using AI-driven agent-based models. Our study uses a 288 million node social contact network spanning all 50 US states plus Washington DC, comprised of 3300 counties, with 12.59 billion daily interactions. The highly-resolved agent-based models use realistic information about disease progression, vaccine uptake, production schedules, acceptance trends, prevalence, and social distancing guidelines. Developing a national model at this resolution that is driven by realistic data requires a complex scalable workflow, model calibration, simulation, and analytics components. Our workflow optimizes the total execution time andmore »Free, publicly-accessible full text available December 15, 2022
-
Discrete dynamical systems serve as useful formal models to study diffusion phenomena in social networks. Motivated by applications in systems biology, several recent papers have studied algorithmic and complexity aspects of diffusion problems for dynamical systems whose underlying graphs are directed, and may contain directed cycles. Such problems can be regarded as reachability problems in the phase space of the corresponding dynamical system. We show that computational intractability results for reachability problems hold even for dynamical systems on directed acyclic graphs (dags). We also show that for dynamical systems on dags where each local function is monotone, the reachability problemmore »
-
Abstract Privacy protection is paramount in conducting health research. However, studies often rely on data stored in a centralized repository, where analysis is done with full access to the sensitive underlying content. Recent advances in federated learning enable building complex machine-learned models that are trained in a distributed fashion. These techniques facilitate the calculation of research study endpoints such that private data never leaves a given device or healthcare system. We show—on a diverse set of single and multi-site health studies—that federated models can achieve similar accuracy, precision, and generalizability, and lead to the same interpretation as standard centralized statisticalmore »Free, publicly-accessible full text available December 1, 2022
-
Mobility restrictions have been a primary intervention for controlling the spread of COVID-19, but they also place a significant economic burden on individuals and businesses. To balance these competing demands, policymakers need analytical tools to assess the costs and benefits of different mobility reduction measures. In this paper, we present our work motivated by our interactions with the Virginia Department of Health on a decision-support tool that utilizes large-scale data and epidemiological modeling to quantify the impact of changes in mobility on infection rates. Our model captures the spread of COVID-19 by using a fine-grained, dynamic mobility network that encodesmore »Free, publicly-accessible full text available August 14, 2022
-
Abstract—Evacuation planning methods aim to design routes and schedules to relocate people to safety in the event of natural or man-made disasters. The primary goal is to minimize casualties which often requires the evacuation process to be completed as soon as possible. In this paper, we present QueST, an agent-based discrete event queuing network simulation system, and STEERS, an iterative routing algorithm that uses QueST for designing and evaluating large scale evacuation plans in terms of total egress time and congestion/bottlenecks occurring during evacuation. We use the Houston Metropolitan Area, which consists of nine US counties and spans an areamore »
-
Abstract—It is well known that physical interdependencies exist between networked civil infrastructures such as transportation and power system networks. In order to analyze complex nonlinear correlations between such networks, datasets pertaining to such real infrastructures are required. However, such data are not readily available due to their proprietary nature. This work proposes a methodology to generate realistic synthetic power distribution networks for a given geographical region. A network generated in this manner is not the actual distribution system, but its functionality is very similar to the real distribution network. The synthetic network connects high voltage substations to individual residential consumersmore »