skip to main content

This content will become publicly available on January 2, 2025

Title: A simplicial epidemic model for COVID-19 spread analysis

Networks allow us to describe a wide range of interaction phenomena that occur in complex systems arising in such diverse fields of knowledge as neuroscience, engineering, ecology, finance, and social sciences. Until very recently, the primary focus of network models and tools has been on describing the pairwise relationships between system entities. However, increasingly more studies indicate that polyadic or higher-order group relationships among multiple network entities may be the key toward better understanding of the intrinsic mechanisms behind the functionality of complex systems. Such group interactions can be, in turn, described in a holistic manner by simplicial complexes of graphs. Inspired by these recently emerging results on the utility of the simplicial geometry of complex networks for contagion propagation and armed with a large-scale synthetic social contact network (also known as a digital twin) of the population in the U.S. state of Virginia, in this paper, we aim to glean insights into the role of higher-order social interactions and the associated varying social group determinants on COVID-19 propagation and mitigation measures.

more » « less
Award ID(s):
1918656 1916805
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multilayer networks continue to gain significant attention in many areas of study, particularly due to their high utility in modeling interdependent systems such as critical infrastructures, human brain connectome, and socioenvironmental ecosystems. However, clustering of multilayer networks, especially using the information on higher-order interactions of the system entities, still remains in its infancy. In turn, higher-order connectivity is often the key in such multilayer network applications as developing optimal partitioning of critical infrastructures in order to isolate unhealthy system components under cyber-physical threats and simultaneous identification of multiple brain regions affected by trauma or mental illness. In this paper, we introduce the concepts of topological data analysis to studies of complex multilayer networks and propose a topological approach for network clustering. The key rationale is to group nodes based not on pairwise connectivity patterns or relationships between observations recorded at two individual nodes but based on how similar in shape their local neighborhoods are at various resolution scales. Since shapes of local node neighborhoods are quantified using a topological summary in terms of persistence diagrams, we refer to the approach as clustering using persistence diagrams (CPD). CPD systematically accounts for the important heterogeneous higher-order properties of node interactions within and in-between network layers and integrates information from the node neighbors. We illustrate the utility of CPD by applying it to an emerging problem of societal importance: vulnerability zoning of residential properties to weather- and climate-induced risks in the context of house insurance claim dynamics.

    more » « less
  2. Abstract Cascades over networks (e.g., neuronal avalanches, social contagions, and system failures) often involve higher-order dependencies, yet theory development has largely focused on pairwise-interaction models. Here, we develop a ‘simplicial threshold model’ (STM) for cascades over simplicial complexes that encode dyadic, triadic and higher-order interactions. Focusing on small-world models containing both short- and long-range k -simplices, we explore spatio-temporal patterns that manifest as a frustration between local and nonlocal propagations. We show that higher-order interactions and nonlinear thresholding coordinate to robustly guide cascades along a k -dimensional generalization of paths that we call ‘geometrical channels’. We also find this coordination to enhance the diversity and efficiency of cascades over a simplicial-complex model for a neuronal network, or ‘neuronal complex’. We support these findings with bifurcation theory and data-driven approaches based on latent geometry. Our findings provide fruitful directions for uncovering the multiscale, multidimensional mechanisms that orchestrate the spatio-temporal patterns of nonlinear cascades. 
    more » « less
  3. Simplicial neural networks (SNNs) have recently emerged as a new direction in graph learning which expands the idea of convolutional architectures from node space to simplicial complexes on graphs. Instead of predominantly assessing pairwise relations among nodes as in the current practice, simplicial complexes allow us to describe higher-order interactions and multi-node graph structures. By building upon connection between the convolution operation and the new block Hodge-Laplacian, we propose the first SNN for link prediction. Our new Block Simplicial Complex Neural Networks (BScNets) model generalizes existing graph convolutional network (GCN) frameworks by systematically incorporating salient interactions among multiple higher-order graph structures of different dimensions. We discuss theoretical foundations behind BScNets and illustrate its utility for link prediction on eight real-world and synthetic datasets. Our experiments indicate that BScNets outperforms the state-of-the-art models by a significant margin while maintaining low computation costs. Finally, we show utility of BScNets as a new promising alternative for tracking spread of infectious diseases such as COVID-19 and measuring the effectiveness of the healthcare risk mitigation strategies. 
    more » « less
  4. Abstract  
    more » « less
  5. Networks and network computations have become a primary mathematical tool for analyzing the structure of many kinds of complex systems, ranging from the Internet and transportation networks to biochemical interactions and social networks. A common task in network analysis is the calculation of quantities that reside on the nodes of a network, such as centrality measures, probabilities or model states. In this perspective article we discuss message passing methods, a family of techniques for performing such calculations, based on the propagation of information between the nodes of a network. We introduce the message passing approach with a series of examples, give some illustrative applications and results and discuss the deep connections between message passing and phase transitions in networks. We also point out some limitations of the message passing approach and describe some recently introduced methods that address these limitations. 
    more » « less