Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This article reports on an exploration of how second-graders can learn mathematics through programming. We started from the theory that a suitably designed programming language can serve children as a language for expressing and experimenting with mathematical ideas and processes in order to do mathematics and thereby, with appropriate tasks and teaching, learn and enjoy the subject. This is very different from using the computer as a teaching app or a digital medium for exploration. Children tackled genuine puzzles – problems for which they did not already have a pre-learned solution. So far, we have built four microworlds for second-graders and tested them with a diverse population of well over three hundred children. The microworlds focus on the most critical second-grade mathematical content (as mandated in state standards), let children pick up all key programming ideas in contexts that make them ‘obvious’ (to maintain focus on the mathematics) and suppress all other distractions to minimize overhead for teachers or students using the microworlds. Because children see the results of the actions they articulate (in the computer language, Snap ! ), they can evaluate their methods and solutions themselves. The feedback is purely the outcome, not happy or sad sounds from the computer. Notably, nearly all children showed intense engagement, some choosing microworlds even outside of mathematics time. Teachers spontaneously reported this as well, with special mention of children whom they found hard to engage in regular lessons. We report our experiments and observations in the spirit of sharing the ideas and promoting more research.more » « less
-
CS4All initiatives nationwide have been working to increase and diversify student participation in computer science (CS). One intentional effort to broaden participation in CS was the launch of the Advanced Placement (AP) CS Principles (CSP) course, which sought to increase the number of students enrolling in CS overall as well as from groups historically underrepresented in CS. Early AP CSP implementation results are encouraging and have identified the need to better understand essential supports for quality implementation, differential student experiences and outcomes, and students’ motivations for course enrollment. In this paper, we explore the motivations that affect student decisions to take AP CSP using survey data collected during fall 2019 in the New York City public schools, the largest school district in the U.S. This work is part of an ongoing research-practice partnership that provides teacher and school supports for AP CSP implementation and aims to improve outcomes especially for female, Black, and Latinx students in high-need schools. In particular, we examine how students’ reasons and influences for enrolling in AP CSP may differ based on self-identified gender and race/ethnicity. Our findings indicate that while most students shared an interest in learning more about CS, students from communities historically underrepresented in computing are more likely to report being placed in the course and to be influenced by guidance counselors. The implications of these results highlight the importance of understanding why students choose AP CSP in developing recruitment resources, student engagement strategies, and supports for implementation.more » « less
-
This paper shares the design principles of one Advanced Placement Computer Science Principles (AP CSP) course, Beauty and Joy of Computing (BJC), both for schools considering curriculum, and for developers in this still-new field. BJC students not only learn about CS, but do some and analyze its social implications; we feel that the job of enticing students into the field isn’t complete until students find programming, itself, something they enjoy and know they can do, and its key ideas accessible. Students must feel invited to use their own creativity and logic, and enjoy the power of their logic and the beauty and elegance of the code by which they express it. All kids need genuine challenge and sensible supports so all can have the joy of making—seeing themselves as creators, not just consumers, and seeing that it is their own intellect, not just our instructions, that is the source of that making. Framework standards are woven into a consistent social and intellectual storyline to give the curriculum integrity. Principles guide even our choice of programming language. Learners should focus on the logic and structure of their thinking, not on misplaced semicolons; attention to such syntactic detail is antithetical to broadening participation. We feature recursion and higher order functions because they beautifully exemplify abstraction, a key idea in CS and the CSP framework. BJC also places significant emphasis on the social implications of computing, balancing fundamental optimism about computing technology with a critical view of specific uses of technology.more » « less
An official website of the United States government
