skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Marks, Frank_D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding physical processes leading to rapid intensification (RI) of tropical cyclones (TCs) under environmental vertical wind shear is key to improving TC intensity forecasts. This study analyzes the thermodynamic processes that help saturate the TC inner core before RI onset using a column‐integrated moist static energy (MSE) framework. Results indicate that the nearly saturated inner core in the lower‐middle troposphere is achieved by an increase in the column‐integrated MSE, as column water vapor accumulates while the mean column temperature cools. The sign of the column‐integrated MSE tendency depends on the competition between surface enthalpy fluxes, radiation, and vertical wind shear‐induced ventilation effect. The reduction of ventilation above the boundary layer due to vertical alignment is crucial to accumulate the energy within the inner core region. A comparison of the RI simulation with a null simulation further highlights the impact of vortex structure on the thermodynamic state adjustment and TC intensification.

     
    more » « less