skip to main content

Search for: All records

Creators/Authors contains: "Maron, Haggai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Jet classification is an important ingredient in measurements and searches for new physics at particle colliders, and secondary vertex reconstruction is a key intermediate step in building powerful jet classifiers. We use a neural network to perform vertex finding inside jets in order to improve the classification performance, with a focus on separation of bottom vs. charm flavor tagging. We implement a novel, universal set-to-graph model, which takes into account information from all tracks in a jet to determine if pairs of tracks originated from a common vertex. We explore different performance metrics and find our method to outperformmore »traditional approaches in accurate secondary vertex reconstruction. We also find that improved vertex finding leads to a significant improvement in jet classification performance.« less
    Free, publicly-accessible full text available June 1, 2022