skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Secondary vertex finding in jets with neural networks
Abstract Jet classification is an important ingredient in measurements and searches for new physics at particle colliders, and secondary vertex reconstruction is a key intermediate step in building powerful jet classifiers. We use a neural network to perform vertex finding inside jets in order to improve the classification performance, with a focus on separation of bottom vs. charm flavor tagging. We implement a novel, universal set-to-graph model, which takes into account information from all tracks in a jet to determine if pairs of tracks originated from a common vertex. We explore different performance metrics and find our method to outperform traditional approaches in accurate secondary vertex reconstruction. We also find that improved vertex finding leads to a significant improvement in jet classification performance.  more » « less
Award ID(s):
1836650
PAR ID:
10256991
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The European Physical Journal C
Volume:
81
Issue:
6
ISSN:
1434-6044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours. 
    more » « less
  2. Abstract Several improvements to the ATLAS triggers used to identify jets containing b -hadrons ( b -jets) were implemented for data-taking during Run 2 of the Large Hadron Collider from 2016 to 2018. These changes include reconfiguring the b -jet trigger software to improve primary-vertex finding and allow more stable running in conditions with high pile-up, and the implementation of the functionality needed to run sophisticated taggers used by the offline reconstruction in an online environment. These improvements yielded an order of magnitude better light-flavour jet rejection for the same b -jet identification efficiency compared to the performance in Run 1 (2011–2012). The efficiency to identify b -jets in the trigger, and the conditional efficiency for b -jets that satisfy offline b -tagging requirements to pass the trigger are also measured. Correction factors are derived to calibrate the b -tagging efficiency in simulation to match that observed in data. The associated systematic uncertainties are substantially smaller than in previous measurements. In addition, b -jet triggers were operated for the first time during heavy-ion data-taking, using dedicated triggers that were developed to identify semileptonic b -hadron decays by selecting events with geometrically overlapping muons and jets. 
    more » « less
  3. Abstract Efficient and accurate algorithms are necessary to reconstruct particles in the highly granular detectors anticipated at the High-Luminosity Large Hadron Collider and the Future Circular Collider. We study scalable machine learning models for event reconstruction in electron-positron collisions based on a full detector simulation. Particle-flow reconstruction can be formulated as a supervised learning task using tracks and calorimeter clusters. We compare a graph neural network and kernel-based transformer and demonstrate that we can avoid quadratic operations while achieving realistic reconstruction. We show that hyperparameter tuning significantly improves the performance of the models. The best graph neural network model shows improvement in the jet transverse momentum resolution by up to 50% compared to the rule-based algorithm. The resulting model is portable across Nvidia, AMD and Habana hardware. Accurate and fast machine-learning based reconstruction can significantly improve future measurements at colliders. 
    more » « less
  4. We report the first observation and measurement of antiproton annihilation at rest on argon track and shower multiplicities and particle identification conducted with the LArIAT experiment. Stopping antiprotons from the Fermilab Test Beam Facility’s charged particle test beam are identified using beamline instrumentation and LArIAT’s liquid argon time projection chamber (LArTPC). The charged particle multiplicity from the annihilation vertex is manually evaluated via hand scanning, yielding a mean of 3.2 ± 0.4 tracks and a standard deviation of 1.3 tracks, consistent with a semiautomated reconstruction resulting in 2.8 ± 0.4 tracks and a standard deviation of 1.2 tracks. Both methods are consistent with Monte Carlo simulations within statistical uncertainty. The shower multiplicities and particle identification for outgoing tracks are also consistent with eant4 model predictions. These results, obtained from a low-statistics sample, provide a foundation for higher-statistics studies in larger LArTPCs, which could refine modeling of intranuclear annihilation on argon and inform scenarios such as neutron-antineutron oscillations. 
    more » « less
  5. Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W. (Ed.)
    One of the most computationally challenging problems expected for the High-Luminosity Large Hadron Collider (HL-LHC) is finding and fitting particle tracks during event reconstruction. Algorithms used at the LHC today rely on Kalman filtering, which builds physical trajectories incrementally while incorporating material effects and error estimation. Recognizing the need for faster computational throughput, we have adapted Kalman-filterbased methods for highly parallel, many-core SIMD and SIMT architectures that are now prevalent in high-performance hardware. Previously we observed significant parallel speedups, with physics performance comparable to CMS standard tracking, on Intel Xeon, Intel Xeon Phi, and (to a limited extent) NVIDIA GPUs. While early tests were based on artificial events occurring inside an idealized barrel detector, we showed subsequently that our mkFit software builds tracks successfully from complex simulated events (including detector pileup) occurring inside a geometrically accurate representation of the CMS-2017 tracker. Here, we report on advances in both the computational and physics performance of mkFit, as well as progress toward integration with CMS production software. Recently we have improved the overall efficiency of the algorithm by preserving short track candidates at a relatively early stage rather than attempting to extend them over many layers. Moreover, mkFit formerly produced an excess of duplicate tracks; these are now explicitly removed in an additional processing step. We demonstrate that with these enhancements, mkFit becomes a suitable choice for the first iteration of CMS tracking, and eventually for later iterations as well. We plan to test this capability in the CMS High Level Trigger during Run 3 of the LHC, with an ultimate goal of using it in both the CMS HLT and offline reconstruction for the HL-LHC CMS tracker. 
    more » « less