Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 8, 2026
-
Abstract We synthesized the astrochemically relevant molecule 3-hydroxypropanal (HOCH2CH2CHO) and subsequently measured and analyzed its rotational spectrum in several frequency regions ranging from 130 to 485 GHz. We analyzed the ground vibrational state as well as the two perturbed lowest-lying vibrationally excited states. With the resulting rotational parameters, we searched for this molecule in the Sagittarius B2(N) and NGC 6334I hot cores, the IRAS 16293-2422B hot corino, and the G+0.693-0.027 and TMC-1 molecular clouds. Rotational emission of 3-hydroxypropanal was tentatively detected toward G+0.693-0.027, and a column density of (8.6 ±1.4) × 1012cm−2was determined. However, this molecule was not detected in the other sources that were investigated. The chemical implications of this tentative discovery are analyzed, and several potential chemical formation pathways of this species are discussed.more » « lessFree, publicly-accessible full text available October 14, 2026
-
Reflectance confocal microscopy (RCM) is a noninvasive optical imaging technique that uses a laser to capture cellular-level resolution images based on differing refractive indices of tissue elements. RCM image interpretation is challenging and requires training to interpret and correlate the grayscale output images that lack nuclear features with tissue pathology. Here, we utilize a deep learning-based framework that uses a convolutional neural network to transform grayscale images into virtually-stained hematoxylin and eosin (H&E)-like images enabling the visualization of various skin layers. To train the deep-learning framework, a series of a minimum of 7 time-lapsed, successive “stacks” of RCM images of excised tissue, spaced 1.52μm apart to a depth of 60.96μm were obtained using the Vivascope 1500. The tissue samples were stained with a 50% acetic acid solution to enhance cell nuclei. These images served as the “ground truth” to train a deep convolutional neural network with a conditional generative adversarial network (GAN)-based machine learning algorithm to digitally convert the images into GAN-based H&E-stained digital images. The machine learning algorithm was initially trained and subsequently retrained with new samples, specifically focusing on squamous neoplasms. The trained algorithm was applied to skin lesions that had a clinical differential diagnosis of squamous neoplasms including squamous cell carcinoma, actinic keratosis, seborrheic keratosis, and basal cell carcinoma. Through continuous training and refinement, the algorithm was able to produce high-resolution, histological quality images of different squamous neoplasms. This algorithm may be used in the future to facilitate earlier diagnosis of cutaneous neoplasms and enable greater uptake of noninvasive imaging technology within the medical community.more » « less
-
Defining the presence of residual tumor and margins may enhance tissue sparing in dermatologic surgery, but no device serves this role. Reflectance Confocal Microscopy (RCM) provides non-invasive cellular-level resolution of the skin, but the FDA-approved RCM device is rigid and requires a tissue cap making tissue mapping difficult. We previously applied “virtual histology”, a deep-learning algorithm to RCM images to generate biopsy-free histology, however, whether virtual histology can be applied to images obtained with a portable, handheld RCM device to scan for residual tumor and margins is unknown. We hypothesize that combining a handheld device with virtual histology could provide accurate tumor assessment and these virtual histology images would correlate with traditional histology. The study was conducted as a prospective, consecutive non-randomized trial at a VA Medical Center dermatologic surgery clinic. Patients over 18 years old with confirmed BCC, SCC, or SCCis were included. Successive in-vivo confocal images from the epidermis and dermis were obtained with the handheld device and processed through a conditional generative adversarial network-based algorithm to create H&E pseudo-stained virtual histology. The algorithm produced similar virtual histology of in-vivo RCM images from the handheld and standard device, demonstrating successful application to the handheld device. Virtual histology applied to handheld RCM images capturing residual tumor, precancerous lesions (actinic keratosis) and scar tissue correlated with Mohs frozen section histology from excised tissue. The combination of machine-learning based virtual histology with handheld RCM images may provide histology-quality data in real time for tumor evaluation to assist the surgeon, improving clinical efficiency by decreasing unnecessary surgeries/layers and cosmesis through better margin assessment.more » « less
-
Reflectance confocal microscopy (RCM) is a noninvasive optical imaging modality that allows for cellular-level resolution, in vivo images of skin without performing a traditional skin biopsy. RCM image interpretation currently requires specialized training to interpret the grayscale output images that are difficult to correlate with tissue pathology. Here, we use a deep learning-based framework that uses a convolutional neural network to transform grayscale output images into virtually-stained hematoxylin and eosin (H&E)-like images allowing for the visualization of various skin layers, including the epidermis, dermal-epidermal junction, and superficial dermis layers. To train the deep-learning framework, a stack of a minimum of 7 time-lapsed, successive RCM images of excised tissue were obtained from epidermis to dermis 1.52 microns apart to a depth of 60.96 microns using the Vivascope 3000. The tissue was embedded in agarose tissue and a curette was used to create a tunnel through which drops of 50% acetic acid was used to stain cell nuclei. These acetic acid-stained images were used as “ground truth” to train a deep convolutional neural network using a conditional generative adversarial network (GAN)-based machine learning algorithm to digitally convert the images into GAN-based H&E-stained digital images. We used the already trained machine learning algorithm and retrained the algorithm with new samples to include squamous neoplasms. Through further training and refinement of the algorithm, high-resolution, histological quality images can be obtained to aid in earlier diagnosis and treatment of cutaneous neoplasms. The overall goal of obtaining biopsy-free virtual histology images with this technology can be used to provide real-time outputs of virtually-stained H&E skin lesions, thus decreasing the need for invasive diagnostic procedures and enabling greater uptake of the technology by the medical community.more » « less
-
The ability to accurately define tumor margins may enhance tissue sparing and increase efficiency in the dermatologic surgery process, but no device exists that serves this role. Reflectance Confocal Microscopy (RCM) provides non-invasive cellular resolution of the skin. The only clinically-approved RCM device is bulky, non-portable, and requires a tissue cap which makes mapping of the underlying tissue impossible. We recently combined “virtual histology”, a machine learning algorithm with RCM images from this standard RCM device to generate biopsy-free histology to overcome these limitations. Whether virtual histology can be used with a portable, handheld RCM device to scan for residual tumor and tumor margins is currently unknown. We hypothesize that combining a handheld RCM device with virtual histology could provide accurate tumor margin assessment. We determined whether our established virtual histology algorithm could be applied to images from a portable RCM device and whether these pseudo-stained virtual histology images correlated with histology from skin specimens. The study was conducted as a prospective, consecutive non-randomized trial at a Veterans Affairs Medical Center dermatologic surgery clinic. All patients greater than 18 years of age with previously biopsied BCC, SCC, or SCCis were included. Successive confocal images from the epidermis to the dermis were obtained 1.5 microns apart from the handheld RCM device to detect residual skin cancer. The handheld, in-vivo RCM images were processed through a conditional generative adversarial network-based machine learning algorithm to digitally convert the images into H&E pseudo-stained virtual histology images. Virtual histology of in-vivo RCM images from unbiopsied skin captured with the portable RCM device were similar to those obtained with the standard RCM device and virtual histology applied to portable RCM images correctly correlated with frozen section histology. Residual tumors detected with virtual histology generated from the portable RCM images accurately corresponded with residual tumors shown in the frozen surgical tissue specimen. Residual tumor was also not detected when excised tissue was clear of tumor following surgical procedure. Thus, the combination of virtual histology with portable RCM may provide accurate histology-quality data for evaluation of residual skin cancer prior to surgery. Combining machine learning-based virtual histology with handheld RCM images demonstrates promise in providing insights into tumor characteristics and has the potential to assist the surgeon and better guide practice decisions to more efficiently serve patients, leading to decreased layers and appointment times. Future work is needed to provide real-time virtual histology, convert horizontal/confocal sections into vertical or 3D sections, and to perform clinical studies to map tumors in tissue.more » « less
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract We present the synthesis and laboratory rotational spectroscopy of the seven-ring polycyclic aromatic hydrocarbon (PAH) cyanocoronene (C24H11CN) using a laser-ablation-assisted cavity-enhanced Fourier transform microwave spectrometer. A total of 71 transitions were measured and assigned between 6.8 and 10.6 GHz. Using these assignments, we searched for emission from cyanocoronene in the Green Bank Telescope (GBT) Observations of TMC-1: Hunting Aromatic Molecules project observations of the cold dark molecular cloud TMC-1 using the 100 m GBT. We detect a number of individually resolved transitions in ultrasensitiveX-band observations and perform a Markov Chain Monte Carlo analysis to derive best-fit parameters, including a total column density of at a temperature of K. A spectral stacking and matched filtering analysis provides a robust 17.3σsignificance to the overall detection. The derived column density is comparable to that of cyano-substituted naphthalene, acenaphthylene, and pyrene, defying the trend of decreasing abundance with increasing molecular size and complexity found for carbon chains. We discuss the implications of the detection for our understanding of interstellar PAH chemistry and highlight major open questions and next steps.more » « lessFree, publicly-accessible full text available April 30, 2026
-
Dogs (Canis familiaris) prefer the walk at lower speeds and the more economical trot at speeds ranging from 0.5 Fr up to 3 Fr. Important works have helped to understand these gaits at the levels of the center of mass, joint mechanics, and muscular control. However, less is known about the global dynamics for limbs and if these are gait or breed-specific. For walk and trot, we analyzed dogs’ global dynamics, based on motion capture and single leg kinetic data, recorded from treadmill locomotion of French Bulldog (N= 4), Whippet (N= 5), Malinois (N= 4), and Beagle (N= 5). Dogs’ pelvic and thoracic axial leg functions combined compliance with leg lengthening. Thoracic limbs were stiffer than the pelvic limbs and absorbed energy in the scapulothoracic joint. Dogs’ ground reaction forces (GRF) formed two virtual pivot points (VPP) during walk and trot each. One emerged for the thoracic (fore) limbs (VPPTL) and is roughly located above and caudally to the scapulothoracic joint. The second is located roughly above and cranially to the hip joint (VPPPL). The positions of VPPs and the patterns of the limbs’ axial and tangential projections of the GRF were gaits but not always breeds-related. When they existed, breed-related changes were mainly exposed by the French Bulldog. During trot, positions of the VPPs tended to be closer to the hip joint or the scapulothoracic joint, and variability between and within breeds lessened compared to walk. In some dogs, VPPPLwas located below the pelvis during trot. Further analyses revealed that leg length and not breed may better explain differences in the vertical position of VPPTLor the horizontal position of VPPPL. The vertical position of VPPPLwas only influenced by gait, while the horizontal position of VPPTLwas not breed or gait-related. Accordingly, torque profiles in the scapulothoracic joint were likely between breeds while hip torque profiles were size-related. In dogs, gait and leg length are likely the main VPPs positions’ predictors. Thus, variations of VPP positions may follow a reduction of limb work. Stability issues need to be addressed in further studies.more » « less
An official website of the United States government

Full Text Available