skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Martinez-Sanchez, Andres"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Physically Unclonable Functions (PUFs) are emerging hardware security primitives that leverage random variations during chip manufacturing process to generate unique secrets. The security level of generated PUF secrets is mainly determined by its unpredictability feature which is typically evaluated using the metric of entropy bits. In this paper, we propose a novel Pairwise Distinct-Modulus (PDM) technique that significantly improves the upper bound of PUF entropy bits from the scale of log2(N!) up to O(N^2). The PDM technique boosts entropy by eliminating the correlation within PUF response bits caused by element reuse in conventional pairwise comparison. We also propose a reliability-enhancing scheme to compensate the impact on reducing reliability by saving a significant portion of potential reliable response bits. Experimental results based on a published large-scale RO PUF frequency dataset validated that the proposed technique significantly boosts PUF entropy bits from the scale of O(N∙log2(N)) up to approach the new upper bound of O(N^2) with a comparable reliability, and the reliability-enhancing technique saves 4x more on the percentage of reliable response bits. 
    more » « less