skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Boosting Entropy and Enhancing Reliability for Physically Unclonable Functions
Physically Unclonable Functions (PUFs) are emerging hardware security primitives that leverage random variations during chip manufacturing process to generate unique secrets. The security level of generated PUF secrets is mainly determined by its unpredictability feature which is typically evaluated using the metric of entropy bits. In this paper, we propose a novel Pairwise Distinct-Modulus (PDM) technique that significantly improves the upper bound of PUF entropy bits from the scale of log2(N!) up to O(N^2). The PDM technique boosts entropy by eliminating the correlation within PUF response bits caused by element reuse in conventional pairwise comparison. We also propose a reliability-enhancing scheme to compensate the impact on reducing reliability by saving a significant portion of potential reliable response bits. Experimental results based on a published large-scale RO PUF frequency dataset validated that the proposed technique significantly boosts PUF entropy bits from the scale of O(N∙log2(N)) up to approach the new upper bound of O(N^2) with a comparable reliability, and the reliability-enhancing technique saves 4x more on the percentage of reliable response bits.  more » « less
Award ID(s):
1914635
PAR ID:
10208847
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Asian Hardware Oriented Security and Trust Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Amsaad, F; Abdelgawad, A; Jamil, A (Ed.)
    Fault Injection attack is a type of side-channel attack on the Physical Unclonable Function (PUF) module that can induce faults in the PUF response by manipulating the PUF circuit behavior through voltage glitches, laser attacks, temperature manipulations, or any other attacks potentially leading to information loss or security system failure. This type of attack exposes the physical characteristics of PUFs that can be analyzed to predict or compromise the unique challenge response pairs (CRPs) reducing the security and reliability of the PUF. Mitigation strategies against such attacks typically include adding noise to the PUF output, using error-correcting codes, or enhanced cryptographic protocols that obscure physical side-channel attacks. In this research, we propose a Generative Adversarial Network (GAN) based security model, that monitors the PUF behavior and detects the variations in PUF response. The model can detect glitches in the PUF response and generate alerts to take mitigation measures. 
    more » « less
  2. Garbled Circuit (GC) is a basic technique for practical secure computation. GC handles Boolean circuits; it consumes significant network bandwidth to transmit encoded gate truth tables, each of which scales with the computational security parameter κ. GC optimizations that reduce bandwidth consumption are valuable. It is natural to consider a generalization of Boolean two-input one-output gates (represented by 4-row one-column lookup tables, LUTs) to arbitrary N-row m-column LUTs. Known techniques for this do not scale, with na¨ıve size-O(Nmκ) garbled LUT being the most practical approach in many scenarios. Our novel garbling scheme – logrow – implements GC LUTs while sending only a logarithmic in N number of ciphertexts! Specifically, let n = ⌈log2 N⌉. We allow the GC parties to evaluate a LUT for (n−1)κ+nmκ+Nm bits of communication. logrow is compatible with modern GC advances, e.g. half gates and free XOR. Our work improves state-of-the-art GC handling of several interesting applications, such as privacypreserving machine learning, floating-point arithmetic, and DFA evaluation. 
    more » « less
  3. Physical Unclonable Functions (PUFs) are widely researched in the field of security because of their unique, robust, and reliable nature, PUFs are considered device-specific root keys that are hard to duplicate. There are many variants of PUFs that are being studied and implemented including hardware and software PUFs. Though PUFs are believed to be secure and reliable, they are not without challenges of their own. The efficient performance of PUF depends on various environmental factors, which leads to inefficiency. Bit flipping is one such problem that can bring down the reliability of the PUF. Memory-based PUFs are prone to unavoidable bit flips occurring in the hardware, similarly, sensor-based PUFs are prone to bit flips occurring due to temperature variation. The number of errors in the PUF response must be minimized to improve the reliability of the PUF in security applications. In this research we explore the Machine Learning (ML) model based on K-mer sequencing to detect and correct the bit flips in the PUFs, hence fortifying the PUF-based secure authentication system for authentication and authorization of Edge Data Centers (EDC) in a Collaborative Edge Computing (CEC) Environment. 
    more » « less
  4. null (Ed.)
    We propose a method to include security and reliability to the messages sent over the CAN bus. Our approach adheres to CAN standard ISO 11898-1. A reliable PUF response is used in key generation to create a unique shared AES-256 key between each ECU, allowing for all message paths to be encrypted. In addition, an HMAC system with a counter is implemented to help protect against replay attacks and message tampering within the network. 
    more » « less
  5. null (Ed.)
    The last few decades have seen a large proliferation in the prevalence of cyber-physical systems. This has been especially highlighted by the explosive growth in the number of Internet of Things (IoT) devices. Unfortunately, the increasing prevalence of these devices has begun to draw the attention of malicious entities which exploit them for their own gain. What makes these devices especially attractive is the various resource constraints present in these devices that make it difficult to add standard security features. Therefore, one intriguing research direction is creating security solutions out of already present components such as sensors. Physically Unclonable Functions (PUFs) are one potential solution that use intrinsic variations of the device manufacturing process for provisioning security. In this work, we propose a novel weak PUF design using thermistor temperature sensors. Our design uses the differences in resistance variation between thermistors in response to temperature change. To generate a PUF that is reliable across a range of temperatures, we use a response-generation algorithm that helps mitigate the effects of temperature variation on the thermistors. We tested the performance of our proposed design across a range of environmental operating conditions. From this we were able to evaluate the reliability of the proposed PUF with respect to variations in temperature and humidity. We also evaluated the PUF’s uniqueness using Monte Carlo simulations. 
    more » « less