skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mashhadian, Amirarsalan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solar-heating siphon-assisted oil recovery is promising as an eco-friendly strategy for oil spill mitigation due to its spontaneous, continuous, and renewable operation.

     
    more » « less
    Free, publicly-accessible full text available May 28, 2025
  2. Free, publicly-accessible full text available March 1, 2025
  3. Rijs, Anouk (Ed.)
    With the development of advanced micro/nanoscale technologies, two-dimensional materials have emerged from laboratories and have been applied in practice. To investigate the mechanisms of solid– liquid interactions in potential applications, molecular dynamics simulations are employed to study the flow behavior of n-dodecane (C12) molecules confined in black phosphorus (BP) nanochannels. Under the same external conditions, a significant difference in the velocity profiles of fluid molecules is observed when flowing along the armchair and zigzag directions of the BP walls. The average velocity of C12 molecules flowing along the zigzag direction is 9-fold higher than that along the armchair direction. The friction factor at the interface between C12 molecules and BP nanochannels and the orientations of C12 molecules near the BP walls are analyzed to explain the differences in velocity profiles under various flow directions, external driving forces, and nanochannel widths. The result shows that most C12 molecules are oriented parallel to the flow direction along the zigzag direction, leading to a relatively smaller friction factor hence a higher average velocity. In contrast, along the armchair direction, most C12 molecules are oriented perpendicular to the flow direction, leading to a relatively larger friction factor and thus a lower average velocity. This work provides important insights into understanding the anisotropic liquid flows in nanochannels. 
    more » « less
    Free, publicly-accessible full text available January 31, 2025
  4. Fabricating mechanically robust graphene aerogels (GAs) without compromising their notable features including superelasticity, large surface area, high porosity, and low density is challenging. This work presents a new one-pot strategy based on ambient drying to fabricate a three-dimensional (3D) graphene-polyethylene aerogel (G-PEA) with a unique hierarchical porous structure, in which the highly porous polyethylene is encapsulated by graphene frameworks. The hierarchical G-PEA exhibited substantially enhanced compressive strength while maintaining low density and superelasticity comparable to those of bare GAs. The G-PEAs with 5 wt.% PE (G-PEA5) showed a significant improvement (up to 2083%) in compressive stress compared to bare GAs, which can be attributed to the porous PE support within the GA framework. The G-PEA5 retained 94% of its compressive stress after 100 compression cycles, which is still higher than that (~80%) of bare GAs, and maintained good elastic recovery. The designed hierarchical G-PEAs show great promise in the applications that require outstanding mechanical properties. 
    more » « less