Resistivity measurements of a black phosphorus (bP) field‐effect transistor 16 nm thick in parallel magnetic fields up to 45 T are reported as a function of the angle between the in‐plane field and the source–drain (S–D) axis of the device. The crystallographic directions of the bP crystal are determined by Raman spectroscopy, with the zigzag axis found to be within 5° of the S–D axis and the armchair axis in the orthogonal planar direction. A transverse magnetoresistance (TMR) as well as a classically forbidden longitudinal magnetoresistance (LMR) are observed. Both are found to be strongly anisotropic and nonmonotonic with increasing in‐plane field. Surprisingly, the relative magnitude (in %) of the positive LMR is larger than the TMR above ≈32 T. Considering the known anisotropy of bP whose zigzag and armchair effective masses differ by a factor of ≈7, the experiment strongly suggests this LMR to be a consequence of the anisotropic Fermi surface of bP.
This content will become publicly available on January 31, 2025
- PAR ID:
- 10527702
- Editor(s):
- Rijs, Anouk
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 26
- Issue:
- 5
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 3890-3896
- Subject(s) / Keyword(s):
- Anisotropic flow, black phosphorus, nanochannels
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Black phosphorus (BP) with unique 2D structure enables the intercalation of foreign elements or molecules, which makes BP directly relevant to high‐capacity rechargeable batteries and also opens a promising strategy for tunable electronic transport and superconductivity. However, the underlying intercalation mechanism is not fully understood. Here, a comparative investigation on the electrochemically driven intercalation of lithium and sodium using in situ transmission electron microscopy is presented. Despite the same preferable intercalation channels along [100] (zigzag) direction, distinct anisotropic intercalation behaviors are observed, i.e., Li ions activate lateral intercalation along [010] (armchair) direction to form an overall uniform propagation, whereas Na diffusion is limited in the zigzag channels to cause the columnar intercalation. First‐principles calculations indicate that the diffusion of both Li and Na ions along the zigzag direction is energetically favorable, while Li/Na diffusion long the armchair direction encounters an increased energy barrier, but that of Na is significantly larger and insurmountable, which accounts for the orientation‐dependent intercalation channels. The evolution of chemical states during phase transformations (from Li
x P/Nax P to Li3P/Na3P) is identified by analytical electron diffraction and energy‐loss spectroscopy. The findings elucidate atomistic Li/Na intercalation mechanisms in BP and show potential implications for other similar 2D materials. -
Graphene nanochannels and nanostructures have been of great interest to applications like nanofluidics and solar-thermal evaporation since nanoconfinement can lead to altered liquid properties. In this article, we employ molecular dynamics simulations combined with the free energy perturbation method to study the influence of external electric fields on the free energy of water molecules in graphene nanochannels. We observe a decrease in the water free energy difference ([Formula: see text], where 0 is the reference vacuum state and 1 is the solvated state) with the increasing electric field, suggesting that the application of an electric field may reduce the thermal energy needed to evaporate water from graphene nanochannels. Our analysis reveals that the reduction in free energy difference is related to more aligned water molecules along the electric field direction in the nanochannels, which leads to a decrease in the water inter-molecular potential energy and, thus, reduces the free energy difference.more » « less
-
The present paper is devoted to mathematical analysis of the model that describes fluid flow moving in a channel with flexible walls, which are subject to traveling waves. Experimental data show that the energy of the flowing fluid can be consumed by the structure (the walls) inducing “traveling wave flutter.” In the problems involving two‐media interactions (fluid/structure), flutter‐like perturbations can occur either in the fluid flowing in the channel with harmonically moving walls, or in the solid structure interacting with the flow. In the present research, it is shown that there are no abrupt (or flutter‐like) changes in the flow velocity profiles. Using the mass conservation law and incompressibility condition, we obtain the initial boundary value problem for the
stream function . The boundary conditions reflect that (i) there is no movement in the vertical direction along the axis of symmetry and (ii) there is no relative movement between the near‐boundary flow and the structure (“no‐slip” condition). The closed form solution is derived for the stream function, which is represented in the form of an infinite functional series. -
Abstract Consider the tight binding model of graphene, sharply terminated along an edge
l parallel to a direction of translational symmetry of the underlying period lattice. We classify such edgesl into those of “zigzag type” and those of “armchair type”, generalizing the classical zigzag and armchair edges. We prove that zero energy / flat band edge states arise for edges of zigzag type, but never for those of armchair type. We exhibit explicit formulas for flat band edge states when they exist. We produce strong evidence for the existence of dispersive (non flat) edge state curves of nonzero energy for mostl .