skip to main content


This content will become publicly available on January 31, 2025

Title: Anisotropic fluid flows in black phosphorus nanochannels
With the development of advanced micro/nanoscale technologies, two-dimensional materials have emerged from laboratories and have been applied in practice. To investigate the mechanisms of solid– liquid interactions in potential applications, molecular dynamics simulations are employed to study the flow behavior of n-dodecane (C12) molecules confined in black phosphorus (BP) nanochannels. Under the same external conditions, a significant difference in the velocity profiles of fluid molecules is observed when flowing along the armchair and zigzag directions of the BP walls. The average velocity of C12 molecules flowing along the zigzag direction is 9-fold higher than that along the armchair direction. The friction factor at the interface between C12 molecules and BP nanochannels and the orientations of C12 molecules near the BP walls are analyzed to explain the differences in velocity profiles under various flow directions, external driving forces, and nanochannel widths. The result shows that most C12 molecules are oriented parallel to the flow direction along the zigzag direction, leading to a relatively smaller friction factor hence a higher average velocity. In contrast, along the armchair direction, most C12 molecules are oriented perpendicular to the flow direction, leading to a relatively larger friction factor and thus a lower average velocity. This work provides important insights into understanding the anisotropic liquid flows in nanochannels.  more » « less
Award ID(s):
2202710 1949910
PAR ID:
10527702
Author(s) / Creator(s):
; ; ; ; ; ; ;
Corporate Creator(s):
Editor(s):
Rijs, Anouk
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
26
Issue:
5
ISSN:
1463-9076
Page Range / eLocation ID:
3890-3896
Subject(s) / Keyword(s):
Anisotropic flow, black phosphorus, nanochannels
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Abstract

    Black phosphorus (BP) with unique 2D structure enables the intercalation of foreign elements or molecules, which makes BP directly relevant to high‐capacity rechargeable batteries and also opens a promising strategy for tunable electronic transport and superconductivity. However, the underlying intercalation mechanism is not fully understood. Here, a comparative investigation on the electrochemically driven intercalation of lithium and sodium using in situ transmission electron microscopy is presented. Despite the same preferable intercalation channels along [100] (zigzag) direction, distinct anisotropic intercalation behaviors are observed, i.e., Li ions activate lateral intercalation along [010] (armchair) direction to form an overall uniform propagation, whereas Na diffusion is limited in the zigzag channels to cause the columnar intercalation. First‐principles calculations indicate that the diffusion of both Li and Na ions along the zigzag direction is energetically favorable, while Li/Na diffusion long the armchair direction encounters an increased energy barrier, but that of Na is significantly larger and insurmountable, which accounts for the orientation‐dependent intercalation channels. The evolution of chemical states during phase transformations (from LixP/NaxP to Li3P/Na3P) is identified by analytical electron diffraction and energy‐loss spectroscopy. The findings elucidate atomistic Li/Na intercalation mechanisms in BP and show potential implications for other similar 2D materials.

     
    more » « less
  3. Graphene nanochannels and nanostructures have been of great interest to applications like nanofluidics and solar-thermal evaporation since nanoconfinement can lead to altered liquid properties. In this article, we employ molecular dynamics simulations combined with the free energy perturbation method to study the influence of external electric fields on the free energy of water molecules in graphene nanochannels. We observe a decrease in the water free energy difference ([Formula: see text], where 0 is the reference vacuum state and 1 is the solvated state) with the increasing electric field, suggesting that the application of an electric field may reduce the thermal energy needed to evaporate water from graphene nanochannels. Our analysis reveals that the reduction in free energy difference is related to more aligned water molecules along the electric field direction in the nanochannels, which leads to a decrease in the water inter-molecular potential energy and, thus, reduces the free energy difference. 
    more » « less
  4. The present paper is devoted to mathematical analysis of the model that describes fluid flow moving in a channel with flexible walls, which are subject to traveling waves. Experimental data show that the energy of the flowing fluid can be consumed by the structure (the walls) inducing “traveling wave flutter.” In the problems involving two‐media interactions (fluid/structure), flutter‐like perturbations can occur either in the fluid flowing in the channel with harmonically moving walls, or in the solid structure interacting with the flow. In the present research, it is shown that there are no abrupt (or flutter‐like) changes in the flow velocity profiles. Using the mass conservation law and incompressibility condition, we obtain the initial boundary value problem for thestream function. The boundary conditions reflect that (i) there is no movement in the vertical direction along the axis of symmetry and (ii) there is no relative movement between the near‐boundary flow and the structure (“no‐slip” condition). The closed form solution is derived for the stream function, which is represented in the form of an infinite functional series.

     
    more » « less
  5. Abstract

    Consider the tight binding model of graphene, sharply terminated along an edgelparallel to a direction of translational symmetry of the underlying period lattice. We classify such edgeslinto those of “zigzag type” and those of “armchair type”, generalizing the classical zigzag and armchair edges. We prove that zero energy / flat band edge states arise for edges of zigzag type, but never for those of armchair type. We exhibit explicit formulas for flat band edge states when they exist. We produce strong evidence for the existence of dispersive (non flat) edge state curves of nonzero energy for mostl.

     
    more » « less