skip to main content

Search for: All records

Creators/Authors contains: "Matejek, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As connectomic datasets exceed hundreds of terabytes in size, accurate and efficient skeleton generation of the label volumes has evolved into a critical component of the computation pipeline used for analysis, evaluation, visualization, and error correction. We propose a novel topological thinning strategy that uses biological constraints to produce accurate centerlines from segmented neuronal volumes while still maintaining bio- logically relevant properties. Current methods are either agnostic to the underlying biology, have non-linear running times as a function of the number of input voxels, or both. First, we eliminate from the input segmentation biologically-infeasible bubbles, pockets of voxels incorrectly labeled within a neuron, to improve segmentation accuracy, allow for more accurate centerlines, and increase processing speed. Next, a Convolutional Neural Network (CNN) detects cell bodies from the input segmentation, allowing us to anchor our skeletons to the somata. Lastly, a synapse-aware topological thinning approach produces expressive skeletons for each neuron with a nearly one-to-one correspondence between endpoints and synapses. We simultaneously estimate geometric properties of neurite width and geodesic distance between synapse and cell body, improving accuracy by 47.5% and 62.8% over baseline methods. We separate the skeletonization process into a series of computation steps, leveraging data-parallel strategies to increasemore »throughput significantly. We demonstrate our results on over 1250 neurons and neuron fragments from three different species, processing over one million voxels per second per CPU with linear scalability.« less
  2. Electron microscopy (EM) enables the reconstruction of neural circuits at the level of individual synapses, which has been transformative for scientific discoveries. However, due to the complex morphology, an accurate reconstruction of cortical axons has become a major challenge. Worse still, there is no publicly available large-scale EM dataset from the cortex that provides dense ground truth segmentation for axons, making it difficult to develop and evaluate large-scale axon reconstruction methods. To address this, we introduce the AxonEM dataset, which consists of two 30x30x30 cubic mm EM image volumes from the human and mouse cortex, respectively. We thoroughly proofread over 18,000 axon instances to provide dense 3D axon instance segmentation, enabling large- scale evaluation of axon reconstruction methods. In addition, we densely annotate nine ground truth subvolumes for training, per each data volume. With this, we reproduce two published state-of-the-art methods and provide their evaluation results as a baseline. We publicly release our code and data at AxonEM/index.html to foster the development of advanced methods.