Reconstructed terabyte and petabyte electron microscopy image volumes contain fully-segmented neurons at resolutions fine enough to identify every synaptic connection. After manual or automatic reconstruction, neuroscientists want to extract wiring diagrams and connectivity information to analyze the data at a higher level. Despite significant advances in image acquisition, neuron segmentation, and synapse detection techniques, the extracted wiring diagrams are still quite coarse, and often do not take into account the wealth of information in the densely reconstructed volumes. We propose a synapse-aware skeleton generation strategy to transform the reconstructed volumes into an information-rich yet abstract format on which neuroscientists can perform biological analysis and run simulations. Our method extends existing topological thinning strategies and guarantees a one-to-one correspondence between skeleton endpoints and synapses while simultaneously generating vital geometric statistics on the neuronal processes. We demonstrate our results on three large-scale connectomic datasets and compare against current state-of-the-art skeletonization algorithms.
more »
« less
Scalable Biologically-Aware Skeleton Generation for Connectomic Volumes
As connectomic datasets exceed hundreds of terabytes in size, accurate and efficient skeleton generation of the label volumes has evolved into a critical component of the computation pipeline used for analysis, evaluation, visualization, and error correction. We propose a novel topological thinning strategy that uses biological constraints to produce accurate centerlines from segmented neuronal volumes while still maintaining bio- logically relevant properties. Current methods are either agnostic to the underlying biology, have non-linear running times as a function of the number of input voxels, or both. First, we eliminate from the input segmentation biologically-infeasible bubbles, pockets of voxels incorrectly labeled within a neuron, to improve segmentation accuracy, allow for more accurate centerlines, and increase processing speed. Next, a Convolutional Neural Network (CNN) detects cell bodies from the input segmentation, allowing us to anchor our skeletons to the somata. Lastly, a synapse-aware topological thinning approach produces expressive skeletons for each neuron with a nearly one-to-one correspondence between endpoints and synapses. We simultaneously estimate geometric properties of neurite width and geodesic distance between synapse and cell body, improving accuracy by 47.5% and 62.8% over baseline methods. We separate the skeletonization process into a series of computation steps, leveraging data-parallel strategies to increase throughput significantly. We demonstrate our results on over 1250 neurons and neuron fragments from three different species, processing over one million voxels per second per CPU with linear scalability.
more »
« less
- Award ID(s):
- 1835231
- PAR ID:
- 10312223
- Date Published:
- Journal Name:
- IEEE transactions on medical imaging
- ISSN:
- 1558-254X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present an auxiliary learning task for the problem of neuron segmentation in electron microscopy volumes. The auxiliary task consists of the prediction of local shape descriptors (LSDs), which we combine with conventional voxel-wise direct neighbor affinities for neuron boundary detection. The shape descriptors capture local statistics about the neuron to be segmented, such as diameter, elongation, and direction. On a study comparing several existing methods across various specimen, imaging techniques, and resolutions, auxiliary learning of LSDs consistently increases segmentation accuracy of affinity-based methods over a range of metrics. Furthermore, the addition of LSDs promotes affinity-based segmentation methods to be on par with the current state of the art for neuron segmentation (flood-filling networks), while being two orders of magnitudes more efficient—a critical requirement for the processing of future petabyte-sized datasets.more » « less
-
Across basic research studies, cell counting requires significant human time and expertise. Trained experts use thin focal plane scanning to count (click) cells in stained biological tissue. This computer-assisted process (optical disector) requires a well-trained human to select a unique best z-plane of focus for counting cells of interest. Though accurate, this approach typically requires an hour per case and is prone to inter-and intra-rater errors. Our group has previously proposed deep learning (DL)-based methods to automate these counts using cell segmentation at high magnification. Here we propose a novel You Only Look Once (YOLO) model that performs cell detection on multi-channel z-plane images (disector stack). This automated Multiple Input Multiple Output (MIMO) version of the optical disector method uses an entire z-stack of microscopy images as its input, and outputs cell detections (counts) with a bounding box of each cell and class corresponding to the z-plane where the cell appears in best focus. Compared to the previous segmentation methods, the proposed method does not require time-and labor-intensive ground truth segmentation masks for training, while producing comparable accuracy to current segmentation-based automatic counts. The MIMO-YOLO method was evaluated on systematic-random samples of NeuN-stained tissue sections through the neocortex of mouse brains (n=7). Using a cross validation scheme, this method showed the ability to correctly count total neuron numbers with accuracy close to human experts and with 100% repeatability (Test-Retest).more » « less
-
null (Ed.)We present a simple, yet effective, auxiliary learning task for the problem of neuron segmentation in electron microscopy volumes. The auxiliary task consists of the prediction of Local Shape Descriptors (LSDs), which we combine with conventional voxel-wise direct neighbor affinities for neuron boundary detection. The shape descriptors are designed to capture local statistics about the neuron to be segmented, such as diameter, elongation, and direction.On a large study comparing several existing methods across various specimen, imaging techniques, and resolutions, we find that auxiliary learning of LSDs consistently increases segmentation accuracy of affinity-based methods over a range of metrics. Furthermore, the addition of LSDs promotes affinity-based segmentation methods to be on par with the current state of the art for neuron segmentation (Flood-Filling Networks,FFN), while being two orders of magnitudes more efficient—a critical requirement for the processing of future petabyte-sized datasets. Implementations of the new auxiliary learning task,network architectures, training, prediction, and evaluation code, as well as the datasets used in this study are publicly available as a benchmark for future method contributions.more » « less
-
Optimal surface segmentation is a state-of-the-art method used for segmentation of multiple globally optimal surfaces in volumetric datasets. The method is widely used in numerous medical image segmentation applications. However, nodes in the graph based optimal surface segmentation method typically encode uniformly distributed orthogonal voxels of the volume. Thus the segmentation cannot attain an accuracy greater than a single unit voxel, i.e. the distance between two adjoining nodes in graph space. Segmentation accuracy higher than a unit voxel is achievable by exploiting partial volume information in the voxels which shall result in non-equidistant spacing between adjoining graph nodes. This paper reports a generalized graph based multiple surface segmentation method with convex priors which can optimally segment the target surfaces in an irregularly sampled space. The proposed method allows non-equidistant spacing between the adjoining graph nodes to achieve subvoxel segmentation accuracy by utilizing the partial volume information in the voxels. The partial volume information in the voxels is exploited by computing a displacement field from the original volume data to identify the subvoxel-accurate centers within each voxel resulting in non-equidistant spacing between the adjoining graph nodes. The smoothness of each surface modeled as a convex constraint governs the connectivity and regularity of the surface. We employ an edge-based graph representation to incorporate the necessary constraints and the globally optimal solution is obtained by computing a minimum s-t cut. The proposed method was validated on 10 intravascular multi-frame ultrasound image datasets for subvoxel segmentation accuracy. In all cases, the approach yielded highly accurate results. Our approach can be readily extended to higher-dimensional segmentations.more » « less
An official website of the United States government

