skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mathur, Nitish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the most striking signatures of Weyl fermions in solid-state systems is their surface Fermi arcs. Fermi arcs can also be localized at internal twin boundaries where two Weyl materials of opposite chirality meet. In this work, we derive constraints on the topology and connectivity of these “internal Fermi arcs.” We show that internal Fermi arcs can exhibit transport signatures, and we propose two probes: quantum oscillations and a quantized chiral magnetic current. We propose merohedrally twinned B20 materials as candidates to host internal Fermi arcs, verified through both model and calculations. Our theoretical investigation sheds light on the topological features and motivates experimental studies on the intriguing physics of internal Fermi arcs. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Freestanding monolayer CrOCl nanosheet obtainedviachemical exfoliation for the first time. 
    more » « less
  3. We show that simple chemical exfoliation methods can be used to exfoliate non-van der Waals, chain-containing compounds to 1D nanoribbons. After this process, they still retain magnetic behavior. 
    more » « less
  4. Flat bands that do not merely arise from weak interactions can produce exotic physical properties, such as superconductivity or correlated many-body effects. The quantum metric can differentiate whether flat bands will result in correlated physics or are merely dangling bonds. A potential avenue for achieving correlated flat bands involves leveraging geometrical constraints within specific lattice structures, such as the kagome lattice; however, materials are often more complex. In these cases, quantum geometry becomes a powerful indicator of the nature of bands with small dispersions. We present a simple, soft-chemical processing route to access a flat band with an extended quantum metric below the Fermi level. By oxidizing Ni-kagome material Cs2Ni3S4to CsNi3S4, we see a two orders of magnitude drop in the room temperature resistance. However, CsNi3S4is still insulating, with no evidence of a phase transition. Using experimental data, density functional theory calculations, and symmetry analysis, our results suggest the emergence of a correlated insulating state of unknown origin. 
    more » « less