Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present a provisory scattered-light detection of the Vega debris disk using deep Hubble Space Telescope (HST) coronagraphy (PID 16666). At only 7.7 pc, Vega is immensely important in debris disk studies both for its prominence and also because it allows the highest physical resolution among all debris systems relative to temperature zones around the star. We employ the STIS coronagraph’s widest wedge position and classical reference differential imaging to achieve among the lowest surface-brightness sensitivities to date ( ) at wide separations using 32 orbits in Cycle 29. We detect a halo extending from the inner edge of our effective inner working angle at 10.″5 out to the photon noise floor at 30″ (80–230 au). The face-on orientation of the system and the lack of a perfectly color-matched point-spread function star have posed significant challenges to the reductions, particularly regarding artifacts from the imperfect color matching. However, we find that a halo of small dust grains provides the best explanation for the observed signal. Unlike Fomalhaut (a close twin to Vega in luminosity, distance, and age), there is no clear distinction in scattered light between the parent planetesimal belt observed with the Atacama Large Millimeter/submillimeter Array and the extended dust halo. These HST observations complement JWST GTO Cycle 1 observations of the system with NIRCam and MIRI.more » « lessFree, publicly-accessible full text available November 6, 2025
-
Abstract 2MASS J16120668–3010270 (hereafter 2MJ1612) is a young M0 star that hosts a protoplanetary disk in the Upper Scorpius star-forming region. Recent Atacama Large Millimeter/submillimeter Array (ALMA) observations of 2MJ1612 show a mildly inclined disk (i = 37°) with a large dust-depleted gap (Rcav ≈ 0 4 or 53 au). We present high-contrast Hαobservations from MagAO-X on the 6.5 m Magellan telescope and new high-resolution submillimeter dust continuum observations with ALMA of 2MJ1612. On both 2025 April 13 and 16, we recovered a point source with Hαexcess with a signal-to-noise ratio ≳5 within the disk gap in our MagAO-X angular and spectral differential images at a separation of 141.96 ± 2.10 mas (23.45 ± 0.29 au deprojected) from the star and a position angle of 159 00 ± 0 55. Furthermore, this Hαsource is within close proximity to aK-band point source in the SPHERE/IRDIS observation taken on 2023 July 21. The astrometric offset between theKband and Hαsource can be explained by orbital motion of a bound companion. Thus, our observations can be best explained by the discovery of an accreting protoplanet, 2MJ1612 b, with an estimated mass of 4MJupand a Hαline flux ranging from (29.7 ± 7.5) × 10−16erg s cm2to (8.2 ± 3.4) × 10−16erg s cm2. 2MJ1612 b is likely the third example of an accreting Hαprotoplanet responsible for carving the gap in its host disk, joining PDS 70 b and c. Further study is necessary to confirm and characterize this protoplanet candidate and to identify any additional protoplanets that may also play a role in shaping the gap.more » « lessFree, publicly-accessible full text available September 10, 2026
An official website of the United States government
