Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present UV and Ly α radial surface brightness (SB) profiles of Ly α emitters (LAEs) at z = 2.84 detected with the Hyper Suprime-Cam on the Subaru Telescope. The depth of our data, together with the wide-field coverage including a protocluster, enable us to study the dependence of Ly α halos (LAHs) on various galaxy properties, including Mpc scale environments. UV and Ly α images of 3490 LAEs are extracted, and stacking the images yields SB sensitivity of ∼ 1 × 10 − 20 erg s − 1 cm − 2 arcsec − 2 in Ly α , reaching the expected level of optically thick gas illuminated by the UV background at z ∼ 3. Fitting of the two-component exponential function gives the scale-lengths of 1.56 ± 0.01 and 10.4 ± 0.3 pkpc. Dividing the sample according to their photometric properties, we find that, while the dependence of halo scale-length on environment outside of the protocluster core is not clear, LAEs in the central regions of protoclusters appear to have very large LAHs, which could be caused by combined effects of source overlapping and diffuse Ly α emission from cool intergalactic gas permeating the forming protocluster core irradiated by active members. For the first time, we identify UV halos around bright LAEs that are probably due to a few lower-mass satellite galaxies. Through comparison with recent numerical simulations, we conclude that, while scattered Ly α photons from the host galaxies are dominant, star formation in satellites evidently contributes to LAHs, and that fluorescent Ly α emission may be boosted within protocluster cores at cosmic noon and/or near bright QSOs.more » « less
-
ABSTRACT We present new spectroscopic observations of Ly α (Ly α) Blob 2 (z ∼ 3.1). We observed extended Ly α emission in three distinct regions, where the highest Ly α surface brightness (SB) centre is far away from the known continuum sources. We searched through the MOSFIRE slits that cover the high Ly α SB regions, but were unable to detect any significant nebular emission near the highest SB centre. We further mapped the flux ratio of the blue peak to the red peak and found it is anticorrelated with Ly α SB with a power-law index of ∼ –0.4. We used radiative transfer models with both multiphase, clumpy, and shell geometries and successfully reproduced the diverse Ly α morphologies. We found that most spectra suggest outflow-dominated kinematics, while 4/15 spectra imply inflows. A significant correlation exists between parameter pairs, and the multiphase, clumpy model may alleviate previously reported discrepancies. We also modelled Ly α spectra at different positions simultaneously and found that the variation of the inferred clump outflow velocities can be approximately explained by line-of-sight projection effects. Our results support the ‘central powering + scattering’ scenario, i.e. the Ly α photons are generated by a central powering source and then scatter with outflowing, multiphase H i gas while propagating outwards. The infalling of cool gas near the blob outskirts shapes the observed blue-dominated Ly α profiles, but its energy contribution to the total Ly α luminosity is less than 10 per cent, i.e. minor compared to the photoionization by star-forming galaxies and/or AGNs.
-
Abstract We report the detection of an ionized gas outflow from an X-ray active galactic nucleus hosted in a massive quiescent galaxy in a protocluster at z = 3.09 (J221737.29+001823.4). It is a type-2 QSO with broad ( W 80 > 1000 km s −1 ) and strong ( log ( L [ OIII ] /erg s −1 ) ≈ 43.4) [O iii ] λ λ 4959,5007 emission lines detected by slit spectroscopy in three-position angles using Multi-Object Infra-Red Camera and Spectrograph (MOIRCS) on the Subaru telescope and the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) on the Keck-I telescope. In the all slit directions, [O iii ] emission is extended to ∼15 physical kpc and indicates a powerful outflow spreading over the host galaxy. The inferred ionized gas mass outflow rate is 22 ± 3 M ⊙ yr −1 . Although it is a radio source, according to the line diagnostics using H β , [O ii ], and [O iii ], photoionization by the central QSO is likely the dominant ionization mechanism rather than shocks caused by radio jets. On the other hand, the spectral energy distribution of the host galaxy is well characterized as a quiescent galaxy that has shut down star formation several hundred Myr ago. Our results suggest a scenario that QSOs are powered after the shutdown of the star formation and help complete the quenching of massive quiescent galaxies at high redshift.more » « less
-
Abstract We present observations of [N ii] 205 μm, [O iii] 88 μm, and dust emission in a strongly-lensed, submillimeter galaxy (SMG) at z = 6.0, G09.83808, with the Atacama Large Millimeter/submillimeter Array (ALMA). Both [N ii] and [O iii] line emissions are detected at >12σ in the ${0{^{\prime \prime}_{.}}8}$-resolution maps. Lens modeling indicates that the spatial distribution of the dust continuum emission is well characterized by a compact disk with an effective radius of 0.64 ± 0.02 kpc and a high infrared surface brightness of ΣIR = (1.8 ± 0.3) × 1012 L⊙ kpc−2. This result supports that G09.83808 is the progenitor of compact quiescent galaxies at z ∼ 4, where the majority of its stars are expected to be formed through a strong and short burst of star formation. G09.83808 and other lensed SMGs show a decreasing trend in the [N ii] line to infrared luminosity ratio with increasing continuum flux density ratio between 63 and 158 μm, as seen in local luminous infrared galaxies (LIRGs). The decreasing trend can be reproduced by photoionization models with increasing ionization parameters. Furthermore, by combining the [N ii]/[O iii] luminosity ratio with far-infrared continuum flux density ratio in G09.83808, we infer that the gas phase metallicity is already Z ≈ 0.5–0.7 Z⊙. G09.83808 is likely one of the earliest galaxies that has been chemically enriched at the end of reionization.
-
Abstract We report a massive quiescent galaxy at z spec = 3.0922 − 0.004 + 0.008 spectroscopically confirmed at a protocluster in the SSA22 field by detecting the Balmer and Ca ii absorption features with the multi-object spectrometer for infrared exploration on the Keck I telescope. This is the most distant quiescent galaxy confirmed in a protocluster to date. We fit the optical to mid-infrared photometry and spectrum simultaneously with spectral energy distribution (SED) models of parametric and nonparametric star formation histories (SFHs). Both models fit the observed SED well and confirm that this object is a massive quiescent galaxy with a stellar mass of log ( M ⋆ / M ⊙ ) = 11.26 − 0.04 + 0.03 and 11.54 − 0.00 + 0.03 , and a star formation rate of SFR/ M ⊙ yr −1 < 0.3 and = 0.01 − 0.01 + 0.03 for parametric and nonparametric models, respectively. The SFH from the former modeling is described as an instantaneous starburst whereas that of the latter modeling is longer-lived, but both models agree with a sudden quenching of the star formation at ∼0.6 Gyr ago. This massive quiescent galaxy is confirmed in an extremely dense group of galaxies predicted as a progenitor of a brightest cluster galaxy formed via multiple mergers in cosmological numerical simulations. We discover three new plausible [O iii ] λ 5007 emitters at 3.0791 ≤ z spec ≤ 3.0833 serendipitously detected around the target. Two of them just between the target and its nearest massive galaxy are possible evidence of their interactions. They suggest the future great size and stellar mass evolution of this massive quiescent galaxy via mergers.more » « less
-
Abstract We present CO J = 4–3 line and 3 mm dust continuum observations of a 100 kpc-scale filamentary Lyα nebula (SSA22 LAB18) at z = 3.1 using the Atacama Large Millimeter/submillimeter Array (ALMA). We detected the CO J = 4–3 line at a systemic zCO = 3.093 ± 0.001 at 11 σ from one of the ALMA continuum sources associated with the Lyα filament. We estimated the CO J = 4–3 luminosity of $L^{\prime }_{\rm {CO(4-3)}}=(2.3 \pm 0.2)\times 10^{9}\:$K km s−1 pc2 for this CO source, which is one order of magnitude smaller than those of typical z > 1 dusty star-forming galaxies (DSFGs) of similar far-infrared luminosity LIR ∼ 1012 L⊙. We derived a molecular gas mass of $M_{\rm {gas}} = (4.4^{+0.9}_{-0.6}) \times 10^{9}\, M_{{\odot }}$ and a star-formation rate of SFR =270 ± 160 M⊙ yr−1. We also estimated a gas depletion time of τdep = 17 ± 10 Myr, which is shorter than those of typical DSFGs. It is suggested that this source is in the transition phase from DSFG to a gas-poor, early-type galaxy. From ALMA to Herschel multi-band dust continuum observations, we measured a dust emissivity index β = 2.3 ± 0.2, which is similar to those of local gas-poor, early-type galaxies. From recent laboratory experiments, the specific chemical compositions needed to reproduce such a high β for interstellar dust at the submillimeter wavelengths. ALMA CO and multi-band dust continuum observations can constrain the evolutionary stage of high-redshift galaxies through τdep and β, and thus we can investigate the chemical composition of dust even in the early Universe.