Abstract We present extended Lyαemission out to 800 kpc of 1034 [Oiii]-selected galaxies at redshifts 1.9 <z< 2.35 using the Hobby–Eberly Telescope Dark Energy Experiment. The locations and redshifts of the galaxies are taken from the 3D-HST survey. The median-stacked surface brightness profile of the Lyαemission of the [Oiii]-selected galaxies agrees well with that of 968 bright Lyα-emitting galaxies (LAEs) atr> 40 kpc from the galaxy centers. The surface brightness in the inner parts (r< 10 kpc) around the [Oiii]-selected galaxies, however, is 10 times fainter than that of the LAEs. Our results are consistent with the notion that photons dominating the outer regions of the Lyαhalos are not produced in the central galaxies but originate outside of them.
more »
« less
UV and Lyα Halos of Lyα Emitters across Environments at z = 2.84*
Abstract We present UV and Ly α radial surface brightness (SB) profiles of Ly α emitters (LAEs) at z = 2.84 detected with the Hyper Suprime-Cam on the Subaru Telescope. The depth of our data, together with the wide-field coverage including a protocluster, enable us to study the dependence of Ly α halos (LAHs) on various galaxy properties, including Mpc scale environments. UV and Ly α images of 3490 LAEs are extracted, and stacking the images yields SB sensitivity of ∼ 1 × 10 − 20 erg s − 1 cm − 2 arcsec − 2 in Ly α , reaching the expected level of optically thick gas illuminated by the UV background at z ∼ 3. Fitting of the two-component exponential function gives the scale-lengths of 1.56 ± 0.01 and 10.4 ± 0.3 pkpc. Dividing the sample according to their photometric properties, we find that, while the dependence of halo scale-length on environment outside of the protocluster core is not clear, LAEs in the central regions of protoclusters appear to have very large LAHs, which could be caused by combined effects of source overlapping and diffuse Ly α emission from cool intergalactic gas permeating the forming protocluster core irradiated by active members. For the first time, we identify UV halos around bright LAEs that are probably due to a few lower-mass satellite galaxies. Through comparison with recent numerical simulations, we conclude that, while scattered Ly α photons from the host galaxies are dominant, star formation in satellites evidently contributes to LAHs, and that fluorescent Ly α emission may be boosted within protocluster cores at cosmic noon and/or near bright QSOs.
more »
« less
- PAR ID:
- 10420273
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 947
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 75
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aims.We investigate the physical properties and redshift evolution of simulated galaxies residing in unvirialized cosmic structures (i.e., protoclusters) at cosmic noon, to understand the influence of the environment on galaxy formation. This work is intended to build clear expectations for the ongoing ODIN (One-hundred-deg2DECam Imaging in Narrowbands) survey, which is mapping large-scale structures atz= 2.4,3.1, and 4.5 using Lyα-emitting galaxies (LAEs) as tracers. Methods.From the IllustrisTNG simulations, we define subregions centered on the most massive clusters ranked by total stellar mass atz= 0 and study the properties of galaxies within, including those of LAEs. To model the LAE population, we take a semi-analytical approach that assigns Lyαluminosity and equivalent width based on the UV luminosities to galaxies in a probabilistic manner. We investigate stellar mass, star formation rate (SFR), major merger events, and specific star formation rate of the population of star-forming galaxies and LAEs in the field- and protocluster environment and trace their evolution across cosmic time betweenz= 0−4. Results.We find that the overall shape of the UV luminosity function in simulated protocluster environments is characterized by a substantially shallower faint-end slope and a large excess on the bright end, signaling different formation histories for galaxies therein. The difference is milder for the Lyαluminosity function. While protocluster galaxies follow the same SFR-M★scaling relation as average field galaxies, a larger fraction appears to have experienced major mergers in the last 200 Myr and as a result shows enhanced star formation at a ≈60% level, leading to a flatter distribution in both SFR and M★relative to galaxies in the average field. We find that protocluster galaxies, including LAEs, begin to quench much earlier (z∼0.8−1.6) than field galaxies (z∼0.5−0.9); our result is in qualitative agreement with recent observational results and highlights the importance of large-scale environment on the overall formation history of galaxies.more » « less
-
Abstract We present the first results from the Web Epoch of Reionization LyαSurvey (WERLS), a spectroscopic survey of Lyαemission using Keck I/MOSFIRE and LRIS. WERLS targets bright (J< 26) galaxy candidates with photometric redshifts of 5.5 ≲z≲ 8 selected from pre-JWST imaging embedded in the Epoch of Reionization (EoR) within three JWST deep fields: CEERS, PRIMER, and COSMOS-Web. Here, we report 11z∼ 7–8 Lyαemitters (LAEs; three secure and eight tentative candidates) detected in the first five nights of WERLS MOSFIRE data. We estimate our observed LAE yield is ∼13%, which is broadly consistent with expectations assuming some loss from redshift uncertainty, contamination from sky OH lines, and that the Universe is approximately half-ionized at this epoch, whereby observable Lyαemission is unlikely for galaxies embedded in a neutral intergalactic medium. Our targets are selected to be UV-bright, and span a range of absolute UV magnitudes with −23.1 <MUV< −19.8. With two LAEs detected atz= 7.68, we also consider the possibility of an ionized bubble at this redshift. Future synergistic Keck+JWST efforts will provide a powerful tool for pinpointing beacons of reionization and mapping the large-scale distribution of mass relative to the ionization state of the Universe.more » « less
-
Abstract The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is designed to detect and measure the redshifts of more than 1 million Lyαemitting galaxies (LAEs) 1.88 <z< 3.52. In addition to its cosmological measurements, these data enable studies of Lyαspectral profiles and the underlying radiative transfer. Using the roughly half a million LAEs in the HETDEX Data Release 3, we stack various subsets to obtain the typical Lyαprofile for thez∼ 2–3 epoch and to understand their physical properties. We find clear absorption wings around Lyαemission, which extend ∼2000 km s−1both redward and blueward of the central line. Using far-UV spectra of nearby (0.002 <z< 0.182) LAEs in the COS Legacy Archive Spectroscopic Survey treasury and optical/near-IR spectra of 2.8 <z< 6.7 LAEs in the Multi Unit Spectroscopic-Wide survey, we observe absorption profiles in both redshift regimes. Dividing the sample by volume density shows that the troughs increase in higher-density regions. This trend suggests that the depth of the absorption is dependent on the local density of objects near the LAE, a geometry that is similar to damped Lyαsystems. Simple simulations of Lyαradiative transfer can produce similar troughs due to absorption of light from background sources by Higas surrounding the LAEs.more » « less
-
ABSTRACT We measure the Lyman continuum (LyC) escape fraction in 54 faint Lyman-alpha emitters (LAEs) at $$z$$ ≃ 3.1 in the GOODS-South field. With the average magnitude of R = 26.7 AB (MUV = −18.8 and L ≃ 0.1L*), these galaxies represent a population of compact young dwarf galaxies. Their properties are likely to resemble those in the galaxies responsible for reionizing the Universe at $$z$$ > 6. We do not detect LyC emission in any individual LAEs in the deep HST F336W images, which covers the rest-frame 820 Å. We do not detect the LyC emission of these LAEs in the stacked F336W images either. The 3σ upper limit of LyC escape fractions is $$f_{\rm esc}\lt 14\!-\!32{{\ \rm per\ cent}}$$. However, the high Ly α rest-frame equivalent width (EW), low stellar mass, and UV luminosity of these LAEs suggest that they should have $$f_{\rm esc}\gt 50{{\ \rm per\ cent}}$$. The low LyC escape fraction from this work and other stacking analyses suggests that the LyC-leaking galaxies with $$f_{\rm esc}\gt 50{{\ \rm per\ cent}}$$ at $$z$$ = 2–3 do not follow the relation between fesc and UV luminosity and Ly α EW derived from typical galaxies at similar redshifts. Therefore, the UV luminosity and Ly α EW are not the best indicators for the LyC escape fraction.more » « less
An official website of the United States government

