skip to main content


Title: UV and Lyα Halos of Lyα Emitters across Environments at z = 2.84*
Abstract We present UV and Ly α radial surface brightness (SB) profiles of Ly α emitters (LAEs) at z = 2.84 detected with the Hyper Suprime-Cam on the Subaru Telescope. The depth of our data, together with the wide-field coverage including a protocluster, enable us to study the dependence of Ly α halos (LAHs) on various galaxy properties, including Mpc scale environments. UV and Ly α images of 3490 LAEs are extracted, and stacking the images yields SB sensitivity of ∼ 1 × 10 − 20 erg s − 1 cm − 2 arcsec − 2 in Ly α , reaching the expected level of optically thick gas illuminated by the UV background at z ∼ 3. Fitting of the two-component exponential function gives the scale-lengths of 1.56 ± 0.01 and 10.4 ± 0.3 pkpc. Dividing the sample according to their photometric properties, we find that, while the dependence of halo scale-length on environment outside of the protocluster core is not clear, LAEs in the central regions of protoclusters appear to have very large LAHs, which could be caused by combined effects of source overlapping and diffuse Ly α emission from cool intergalactic gas permeating the forming protocluster core irradiated by active members. For the first time, we identify UV halos around bright LAEs that are probably due to a few lower-mass satellite galaxies. Through comparison with recent numerical simulations, we conclude that, while scattered Ly α photons from the host galaxies are dominant, star formation in satellites evidently contributes to LAHs, and that fluorescent Ly α emission may be boosted within protocluster cores at cosmic noon and/or near bright QSOs.  more » « less
Award ID(s):
2007499 2007390
NSF-PAR ID:
10420273
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
947
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
75
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is designed to detect and measure the redshifts of more than 1 million Lyαemitting galaxies (LAEs) 1.88 <z< 3.52. In addition to its cosmological measurements, these data enable studies of Lyαspectral profiles and the underlying radiative transfer. Using the roughly half a million LAEs in the HETDEX Data Release 3, we stack various subsets to obtain the typical Lyαprofile for thez∼ 2–3 epoch and to understand their physical properties. We find clear absorption wings around Lyαemission, which extend ∼2000 km s−1both redward and blueward of the central line. Using far-UV spectra of nearby (0.002 <z< 0.182) LAEs in the COS Legacy Archive Spectroscopic Survey treasury and optical/near-IR spectra of 2.8 <z< 6.7 LAEs in the Multi Unit Spectroscopic-Wide survey, we observe absorption profiles in both redshift regimes. Dividing the sample by volume density shows that the troughs increase in higher-density regions. This trend suggests that the depth of the absorption is dependent on the local density of objects near the LAE, a geometry that is similar to damped Lyαsystems. Simple simulations of Lyαradiative transfer can produce similar troughs due to absorption of light from background sources by Higas surrounding the LAEs.

     
    more » « less
  2. Abstract

    We present extended Lyαemission out to 800 kpc of 1034 [Oiii]-selected galaxies at redshifts 1.9 <z< 2.35 using the Hobby–Eberly Telescope Dark Energy Experiment. The locations and redshifts of the galaxies are taken from the 3D-HST survey. The median-stacked surface brightness profile of the Lyαemission of the [Oiii]-selected galaxies agrees well with that of 968 bright Lyα-emitting galaxies (LAEs) atr> 40 kpc from the galaxy centers. The surface brightness in the inner parts (r< 10 kpc) around the [Oiii]-selected galaxies, however, is 10 times fainter than that of the LAEs. Our results are consistent with the notion that photons dominating the outer regions of the Lyαhalos are not produced in the central galaxies but originate outside of them.

     
    more » « less
  3. ABSTRACT

    Several studies have detected Lyman-alpha (Ly α) from bright ($M_{\small UV}\lesssim -21.5$) galaxies during the early stages of reionization despite the significantly neutral intergalactic medium. To explain these detections, it has been suggested that z > 7 Ly α emitters (LAEs) inhabit physical Mpc (pMpc)-scale ionized regions powered by overdensities of faint galaxies; however, systematic searches for these overdensities near LAEs have been challenging. Here, we use Cosmic Evolution Early Release Science JWST/Near Infrared Camera imaging to search for large-scale galaxy overdensities near two very ultraviolet (UV)-bright, z = 8.7 LAEs in the Extended Groth Strip (EGS) field. We colour select 27 z = 8.4–9.1 candidates, including the one LAE in the footprint (EGSY8p7). From spectral energy distribution models, we infer moderately faint UV luminosities ($-21.2\lesssim {M_{\small UV}}\lesssim -19.1$) and stellar masses of M* ≈ 107.5–8.8 M⊙. All are efficient ionizing agents ($\xi _{\text{ion}}^{*}\approx 10^{25.5-26.0}$ Hz erg−1) and are generally morphologically simple with only one compact (re ≲ 140 to ∼650 pc) star-forming component. 13 candidates lie within 5 arcmin of EGSY8p7, leading to a factor-of-four galaxy overdensity at ≲5 arcmin (∼1.4 projected pMpc at z ∼ 8.7) separations from EGSY8p7. Separations of 10–15 arcmin (∼2.7–4.1 projected pMpc) are consistent with an average field. The spatial distribution of our sample may qualitatively suggest an R ≥ 2 pMpc ionized bubble encompassing both LAEs in EGS, which is theoretically unexpected but may be possible for a galaxy population four times more numerous than the average to create with moderate escape fractions (fesc ≳ 0.15) over long times (≳ 200 Myr). Upcoming spectroscopic follow-up will characterize the size of any ionized bubble that may exist and the properties of the galaxies powering such a bubble.

     
    more » « less
  4. Abstract We present Ly α and ultraviolet (UV)-continuum luminosity functions (LFs) of galaxies and active galactic nuclei (AGNs) at z = 2.0–3.5 determined by the untargeted optical spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). We combine deep Subaru imaging with HETDEX spectra resulting in 11.4 deg 2 of fiber spectra sky coverage, obtaining 18,320 galaxies spectroscopically identified with Ly α emission, 2126 of which host type 1 AGNs showing broad (FWHM > 1000 km s −1 ) Ly α emission lines. We derive the Ly α (UV) LF over 2 orders of magnitude covering bright galaxies and AGNs in log L Ly α / [ erg s − 1 ] = 43.3 – 45.5 (−27 < M UV < −20) by the 1/ V max estimator. Our results reveal that the bright-end hump of the Ly α LF is composed of type 1 AGNs. In conjunction with previous spectroscopic results at the faint end, we measure a slope of the best-fit Schechter function to be α Sch = − 1.70 − 0.14 + 0.13 , which indicates that α Sch steepens from z = 2–3 toward high redshift. Our UV LF agrees well with previous AGN UV LFs and extends to faint-AGN and bright-galaxy regimes. The number fraction of Ly α -emitting objects ( X LAE ) increases from M UV * ∼ − 21 to bright magnitude due to the contribution of type 1 AGNs, while previous studies claim that X Ly α decreases from faint magnitudes to M UV * , suggesting a valley in the X Ly α –magnitude relation at M UV * . Comparing our UV LF of type 1 AGNs at z = 2–3 with those at z = 0, we find that the number density of faint ( M UV > −21) type 1 AGNs increases from z ∼ 2 to 0, as opposed to the evolution of bright ( M UV < −21) type 1 AGNs, suggesting AGN downsizing in the rest-frame UV luminosity. 
    more » « less
  5. Abstract The discovery and spectroscopic confirmation of Hyperion, a protosupercluster at z ∼ 2.47, provides an unprecedented opportunity to study distant galaxies in the context of their large-scale environment. We carry out deep narrowband imaging of a ≈1° × 1° region around Hyperion and select 157 Ly α emitters (LAEs). The inferred LAE overdensity is δ g ≈ 40 within an effective volume of 30 × 20 × 15 cMpc 3 , consistent with the fact that Hyperion is composed of multiple protoclusters and will evolve into a supercluster with a total mass of M tot ≈ 1.4 × 10 15 M ⊙ at z = 0. The distribution of LAEs closely mirrors that of known spectroscopic members, tracing the protocluster cores and extended filamentary arms connected to them, suggesting that they trace the same large-scale structure. By cross-correlating the LAE positions with H i tomography data, we find weak evidence that LAEs may be less abundant in the highest H i regions, perhaps because Ly α is suppressed in such regions. The Hyperion region hosts a large population of active galactic nuclei (AGNs) ≈ 12 times more abundant than that in the field. The prevalence of AGNs in protocluster regions hints at the possibility that they may be triggered by physical processes that occur more frequently in dense environments, such as galaxy mergers. Our study demonstrates LAEs as reliable markers of the largest cosmic structures. When combined with ongoing and upcoming imaging and spectroscopic surveys, wide-field narrowband imaging has the potential to advance our knowledge in the formation and evolution of cosmic structures and of their galaxy inhabitants. 
    more » « less