Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate in the Arctic is changing at a rapid pace. When vegetation reacts to these changes, chemicals called biogenic volatile organic compounds (BVOCs) can be released into the atmosphere in new ways. This project seeks to investigate how climate change affects the quantity and type of BVOCs released into the atmosphere on the North Slope of Alaska (NSA). In addition, we are interested in the chemical reactions these BVOCs undergo in the Arctic atmosphere. Project goals will be accomplished through field work on the NSA, and collection and laboratory analysis of atmospheric samples. Specifically, the project intends to measure the concentration of BVOCs and their secondary organic aerosol products during North Slope of Alaska field campaigns. In addition to BVOCs and organic acids, the measurements include additional baseline measurements of other volatile organic compounds (VOC) and aerosol components. We are reporting inorganic ions, alkanes, and polycyclic aromatic hydrocarbons (PAHs) for aerosol composition and select aromatic and oxidized VOCs. The time period for these detailed measurements is Jun - Aug 2023 for Utqiagvik, Alaska (AK). VOC measurements were made by proton transfer reaction mass spectrometry. The proton transfer reaction mass spectrometer (PTR-MS) was operated with Hydronium (H3O+) ion at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) site in Utqiagvik, AK from 170623 to 130823. Total suspended particulate matter samples were collected on quartz fiber filters at a roughly weekly schedule. These filters were then used for offline analysis. Offline measurement of cations and anions was conducted using ion chromatography. Offline measurement of alkanes and PAH was conducted using thermal desorption gas chromatography - mass spectrometry.more » « less
-
Rapid warming is likely increasing primary production and wildfire occurrence in the Arctic. Projected changes in the abundance and composition of carbonaceous aerosols during the summer are likely to impact atmospheric chemistry and climate, but our understanding of these processes is limited by sparse observations. Here, we characterize carbonaceous aerosol at two field sites, Toolik Field Station in the Interior and the Atmospheric Radiation Measurement facility at Utqiaġvik on the Arctic coast of Alaska, USA, through the summers of 2022 and 2023. We estimated particulate matter ≤2.5 micrometers (PM2.5) and particulate matter ≤10 micrometers (PM10) using laser light scattering (PurpleAir sensors) and examined total carbon (TC) and its organic carbon (OC) and elemental carbon (EC) fractions in total suspended particles (TSP). We also investigated the dominant sources of carbonaceous aerosol using air mass backward-trajectories from the National Oceanic and Atmospheric Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and radiocarbon source apportionment of TC. We found TC concentrations were about twice as high in the Interior than on the coast and that modern sources were the dominant sources of carbonaceous aerosol at both Toolik (95–99%) and Utqiaġvik (86–89%), with minor contributions from fossil sources. Periods of significantly elevated PM, TC, OC, and EC concentrations coincided with major boreal forest fire activity in North America that brought smoke to the region. The radiocarbon signature of EC measured at Toolik during these wildfire smoke events indicated that over 90% of the EC originated from modern sources. Our measurements demonstrate changing aerosol concentrations in the Arctic during the summer, and emphasize the need for continuous atmospheric monitoring to evaluate and advance our understanding of this rapidly changing atmospheric environment. (Manuscript in prep)more » « less
-
Rapid warming is likely increasing primary production and wildfire occurrence in the Arctic. Projected changes in the abundance and composition of carbonaceous aerosols during the summer are likely to impact atmospheric chemistry and climate, but our understanding of these processes is limited by sparse observations. Here, we characterize carbonaceous aerosol at two field sites, Toolik Field Station in the Interior and the Atmospheric Radiation Measurement facility at Utqiaġvik on the Arctic coast of Alaska, USA, through the summers of 2022 and 2023. We estimated particulate matter ≤2.5 micrometers (PM2.5) and particulate matter ≤10 micrometers (PM10) using laser light scattering (PurpleAir sensors) and examined total carbon (TC) and its organic carbon (OC) and elemental carbon (EC) fractions in total suspended particles (TSP). We also investigated the dominant sources of carbonaceous aerosol using air mass backward-trajectories from the National Oceanic and Atmospheric Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and radiocarbon source apportionment of TC. We found TC concentrations were about twice as high in the Interior than on the coast and that modern sources were the dominant sources of carbonaceous aerosol at both Toolik (95–99%) and Utqiaġvik (86–89%), with minor contributions from fossil sources. Periods of significantly elevated PM, TC, OC, and EC concentrations coincided with major boreal forest fire activity in North America that brought smoke to the region. The radiocarbon signature of EC measured at Toolik during these wildfire smoke events indicated that over 90% of the EC originated from modern sources. Our measurements demonstrate changing aerosol concentrations in the Arctic during the summer, and emphasize the need for continuous atmospheric monitoring to evaluate and advance our understanding of this rapidly changing atmospheric environment. (Manuscript in prep)more » « less
-
Abstract Rapid warming is likely increasing primary production and wildfire occurrence in the Arctic. Projected changes in carbonaceous aerosols during the summer will impact atmospheric chemistry and climate, but our understanding of these processes is limited by sparse observations. Here, we characterize carbonaceous aerosol in Alaska, USA: Toolik Field Station in the Interior and the Atmospheric Radiation Measurement facility at Utqiaġvik on the Arctic coast, during the summers of 2022 and 2023. We estimated PM2.5and PM10concentrations using laser light scattering (PurpleAir sensors) and examined total carbon (TC) and its organic carbon (OC) and elemental carbon (EC) fractions in total suspended particles (TSP). We investigated the dominant sources of carbonaceous aerosol using air mass backward‐trajectories from the NOAA HYSPLIT model and radiocarbon source apportionment of TC. TC concentrations were about twice as high in the Interior compared to the coast, with contemporary sources dominating at both Toolik (95%–99%) and Utqiaġvik (86%–89%) over minor contributions from fossil sources. Elevated PM, TC, OC, and EC concentrations coincided with major boreal forest fire activity in North America that brought smoke to the region. The radiocarbon signature of EC measured at Toolik during these wildfire events indicated that over 90% of the EC came from contemporary sources. Our measurements demonstrate the potential for Arctic aerosol concentrations to respond significantly to climate warming‐induced changes to the landscape and emphasize the need for continuous atmospheric monitoring to advance our understanding of this rapidly changing environment.more » « less
An official website of the United States government
