skip to main content

Search for: All records

Creators/Authors contains: "Mayer, Lucio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Using high-resolution Romulus simulations, we explore the origin and evolution of the circumgalactic medium (CGM) in the region 0.1 ≤ R/R500 ≤ 1 around massive central galaxies in group-scale halos. We find that the CGM is multiphase and highly dynamic. Investigating the dynamics, we identify seven patterns of evolution. We show that these are robust and detected consistently across various conditions. The gas cools via two pathways: (1) filamentary cooling inflows and (2) condensations forming from rapidly cooling density perturbations. In our cosmological simulations, the perturbations are mainly seeded by orbiting substructures. The condensations can form even when the median tcool/tff of the X-ray emitting gas is above 10 or 20. Strong amplitude perturbations can provoke runaway cooling regardless of the state of the background gas. We also find perturbations whose local tcool/tff ratios drop below the threshold but which do not condense. Rather, the ratios fall to some minimum value and then bounce. These are weak perturbations that are temporarily swept up in satellite wakes and carried to larger radii. Their tcool/tff ratios decrease because tff is increasing, not because tcool is decreasing. For structures forming hierarchically, our study highlights the challenge of using a simple threshold argument to infer the CGM’s evolution. It also highlights that the median hot gas properties are suboptimal determinants of the CGM’s state and dynamics. Realistic CGM models must incorporate the impact of mergers and orbiting satellites, along with the CGM’s heating and cooling cycles.

    more » « less

    We revisit the conditions present in supermassive discs (SMDs) formed by the merger of gas-rich, metal-enriched galaxies at redshift z ∼ 10. We find that SMDs naturally form hydrostatic cores which go through a rapidly accreting supermassive star phase, before directly collapsing into massive black holes via the general relativistic instability. The growth and collapse of the cores occurs within ∼5 × 105 yr from the formation of the SMD, producing bright electromagnetic, neutrino and gravitational wave transients with a typical duration of a few minutes and, respectively, a typical flux and a typical strain amplitude at Earth of ∼10−8 erg s−1 cm−2 and ∼4 × 10−21. We provide a simple fitting formula for the resulting black hole masses, which range from a few 106 to 108 M⊙ depending on the initial SMD configuration. Crucially, our analysis does not require any specific assumption on the thermal properties of the gas, nor on the angular momentum loss mechanisms within the SMD. Led by these findings, we argue that the merger-driven scenario provides a robust pathway for the rapid formation of supermassive black holes at z > 6. It provides an explanation for the origin of the brightest and oldest quasars without the need of a sustained growth phase from a much smaller seed. Its smoking gun signatures can be tested directly via multimessenger observations.

    more » « less

    Current observations favour that the massive ultraviolet-bright clumps with a median stellar mass of $\sim 10^7\, {\rm M}_{\odot }$, ubiquitously observed in z ∼ 1–3 galaxies, are star-forming regions formed in situ in galaxies. It has been proposed that they result from gas fragmentation due to gravitational instability of gas-rich, turbulent, and high-redshift discs. We bring support to this scenario by reporting the new discovery of giant molecular clouds (GMCs) in the strongly lensed, clumpy, main-sequence galaxy, A521-sys1, at z = 1.043. Its CO(4–3) emission was mapped with the Atacama Large Millimetre/submillimetre Array (ALMA) at an angular resolution of 0.19 × 0.16 arcsec2, reading down to 30 pc, thanks to gravitational lensing. We identified 14 GMCs, most being virialized, with $10^{5.9}-10^{7.9}\, {\rm M}_{\odot }$ masses and a median $800\, {\rm M}_{\odot }~\mathrm{pc}^{-2}$ molecular gas mass surface density, that are, respectively, 100 and 10 times higher than for nearby GMCs. They are also characterized by 10 times higher supersonic turbulence with a median Mach number of 60. They end up to fall above the Larson scaling relations, similarly to the GMCs in another clumpy z ≃ 1 galaxy, the Cosmic Snake, although differences between the two sets of high-redshift GMCs exist. Altogether they support that GMCs form with properties that adjust to the ambient interstellar medium conditions prevalent in the host galaxy whatever its redshift. The detected A521-sys1 GMCs are massive enough to be the parent gas clouds of stellar clumps, with a relatively high star formation efficiency per free-fall time of ∼11 per cent.

    more » « less

    Accurately reproducing the thin cold gas discs observed in nearby spiral galaxies has been a long standing issue in cosmological simulations. Here, we present measurements of the radially resolved H i scale height in 22 non-interacting Milky Way-mass galaxies from the FIREbox cosmological volume. We measure the H i scale heights using five different approaches commonly used in the literature: fitting the vertical volume density distribution with a Gaussian, the distance between maximum and half-maximum of the vertical volume density distribution, a semi-empirical description using the velocity dispersion and the galactic gravitational potential, the analytic assumption of hydrostatic equilibrium, and the distance from the midplane which encloses ≳60 per cent of the H i mass. We find median H i scale heights, measured using the vertical volume distribution, that range from ∼100 pc in the galactic centres to ∼800 pc in the outskirts and are in excellent agreement with recent observational results. We speculate that the presence of a realistic multiphase interstellar medium, including cold gas, and realistic stellar feedback are the drivers behind the realistic H i scale heights.

    more » « less
  5. null (Ed.)
  6. null (Ed.)
    ABSTRACT We perform a consistent comparison of the mass and mass profiles of massive (M⋆ > 1011.4 M⊙) central galaxies at z ∼ 0.4 from deep Hyper Suprime-Cam (HSC) observations and from the Illustris, TNG100, and Ponos simulations. Weak lensing measurements from HSC enable measurements at fixed halo mass and provide constraints on the strength and impact of feedback at different halo mass scales. We compare the stellar mass function (SMF) and the Stellar-to-Halo Mass Relation (SHMR) at various radii and show that the radius at which the comparison is performed is important. In general, Illustris and TNG100 display steeper values of α where $M_{\star } \propto M_{\rm vir}^{\alpha }$. These differences are more pronounced for Illustris than for TNG100 and in the inner rather than outer regions of galaxies. Differences in the inner regions may suggest that TNG100 is too efficient at quenching in situ star formation at Mvir ≃ 1013 M⊙ but not efficient enough at Mvir ≃ 1014 M⊙. The outer stellar masses are in excellent agreement with our observations at Mvir ≃ 1013 M⊙, but both Illustris and TNG100 display excess outer mass as Mvir ≃ 1014 M⊙ (by ∼0.25 and ∼0.12 dex, respectively). We argue that reducing stellar growth at early times in $M_\star \sim 10^{9-10} \, \mathrm{M}_{\odot }$ galaxies would help to prevent excess ex-situ growth at this mass scale. The Ponos simulations do not implement AGN feedback and display an excess mass of ∼0.5 dex at r < 30 kpc compared to HSC which is indicative of overcooling and excess star formation in the central regions. The comparison of the inner profiles of Ponos and HSC suggests that the physical scale over which the central AGN limits star formation is r ≲ 20 kpc. Joint comparisons between weak lensing and galaxy stellar profiles are a direct test of whether simulations build and deposit galaxy mass in the correct dark matter haloes and thereby provide powerful constraints on the physics of feedback and galaxy growth. Our galaxy and weak lensing profiles are publicly available to facilitate comparisons with other simulations. 
    more » « less
  7. Abstract The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024