skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The minimum measurable eccentricity from gravitational waves of LISA massive black hole binaries
ABSTRACT We explore the eccentricity measurement threshold of Laser Interferometer Space Antenna (LISA) for gravitational waves radiated by massive black hole binaries (MBHBs) with redshifted BH masses Mz in the range 104.5–107.5 M⊙ at redshift z = 1. The eccentricity can be an important tracer of the environment where MBHBs evolve to reach the merger phase. To consider LISA’s motion and apply the time delay interferometry, we employ the lisabeta software and produce year-long eccentric waveforms using the inspiral-only post-Newtonian model taylorf2ecc. We study the minimum measurable eccentricity (emin, defined one year before the merger) analytically by computing matches and Fisher matrices, and numerically via Bayesian inference by varying both intrinsic and extrinsic parameters. We find that emin strongly depends on Mz and weakly on mass ratio and extrinsic parameters. Match-based signal-to-noise ratio criterion suggest that LISA will be able to detect emin ∼ 10−2.5 for lighter systems (Mz ≲ 105.5 M⊙) and ∼10−1.5 for heavier MBHBs with a 90 per cent confidence. Bayesian inference with Fisher initialization and a zero noise realization pushes this limit to emin ∼ 10−2.75 for lower-mass binaries, assuming a <50 per cent relative error. Bayesian inference can recover injected eccentricities of 0.1 and 10−2.75 for a 105 M⊙ system with an ∼10−2 per cent and an ∼10 per cent relative errors, respectively. Stringent Bayesian odds criterion ($$\ln {\mathcal {B}}\gt 8$$) provides nearly the same inference. Both analytical and numerical methodologies provide almost consistent results for our systems of interest. LISA will launch in a decade, making this study valuable and timely for unlocking the mysteries of the MBHB evolution.  more » « less
Award ID(s):
2125764 2319441
PAR ID:
10556249
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Monthly Notices of the Royal Astronomical Society
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
528
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4176 to 4187
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We assess the possibility of detecting both eccentricity and gas effects (migration and accretion) in the gravitational wave (GW) signal from LISA massive black hole binaries at redshift $z=1$. Gas induces a phase correction to the GW signal with an effective amplitude ($$C_{\rm g}$$) and a semimajor axis dependence (assumed to follow a power-law with slope $$n_{\rm g}$$). We use a complete model of the LISA response and employ a gas-corrected post-Newtonian inspiral-only waveform model TaylorF2Ecc. By using the Fisher formalism and Bayesian inference, we constrain $$C_{\rm g}$$ together with the initial eccentricity $$e_0$$, the total redshifted mass $$M_z$$, the primary-to-secondary mass ratio q, the dimensionless spins $$\chi _{1,2}$$ of both component BHs, and the time of coalescence $$t_c$$. We find that simultaneously constraining $$C_{\rm g}$$ and $$e_0$$ leads to worse constraints on both parameters with respect to when considered individually. For a standard thin viscous accretion disc around $$M_z=10^5~{\rm M}_{\odot }$$, $q=8$, $$\chi _{1,2}=0.9$$, and $$t_c=4$$ years MBHB, we can confidently measure (with a relative error of $$\lt 50$$ per cent) an Eddington ratio $${\rm f}_{\rm Edd}\sim 0.1$$ for a circular binary and $${\rm f}_{\rm Edd}\sim 1$$ for an eccentric system assuming $$\mathcal {O}(10)$$ stronger gas torque near-merger than at the currently explored much-wider binary separations. The minimum measurable eccentricity is $$e_0\gtrsim 10^{-2.75}$$ in vacuum and $$e_0\gtrsim 10^{-2}$$ in gas. A weak environmental perturbation ($${\rm f}_{\rm Edd}\lesssim 1$$) to a circular binary can be mimicked by an orbital eccentricity during inspiral, implying that an electromagnetic counterpart would be required to confirm the presence of an accretion disc. 
    more » « less
  2. ABSTRACT We investigate the effect of the cutting-edge circumbinary disc (CBD) evolution models on massive black hole binary (MBHB) populations and the gravitational wave background (GWB). We show that CBD-driven evolution leaves a tell-tale signature in MBHB populations, by driving binaries towards an equilibrium eccentricity that depends on the binary mass ratio. We find high orbital eccentricities ($$e_{\rm b} \sim 0.5$$) as MBHBs enter multimessenger observable frequency bands. The CBD-induced eccentricity distribution of MBHB populations in observable bands is independent of the initial eccentricity distribution at binary formation, erasing any memory of eccentricities induced in the large-scale dynamics of merging galaxies. Our results suggest that eccentric MBHBs are the rule rather than the exception in upcoming transient surveys, provided that CBDs regularly form in MBHB systems. We show that the GWB amplitude is sensitive to CBD-driven preferential accretion onto the secondary, resulting in an increase in GWB amplitude $$A_{\rm yr^{-1}}$$ by over 100 per cent with just 10 per cent Eddington accretion. As we self-consistently allow for binary hardening and softening, we show that CBD-driven orbital expansion does not diminish the GWB amplitude, and instead increases the amplitude by a small amount. We further present detection rates and population statistics of MBHBs with $$M_{\rm b} \gtrsim 10^6 \, {\rm M}_{\odot }$$ in Laser Interferometer Space Antenna, showing that most binaries have equal mass ratios and can retain residual eccentricities up to $$e_{\rm b} \sim 10^{-3}$$ due to CBD-driven evolution. 
    more » « less
  3. Abstract We present the successful recovery of common-envelope ejection efficiency assumed in a simulated population of double white dwarf (DWD) binaries like those which may be observed by the future Laser Interferometer Space Antenna (LISA) mission. We simulate the formation of DWD binaries by using the COSMIC population synthesis code to sample binary formation conditions such as initial mass function, metallicity of star formation, initial orbital period, and initial eccentricity. These binaries are placed in the m12i synthetic Milky Way–like galaxy, and their signal-to-noise ratio (SNR) for the LISA instrument is estimated, considering a Galactic gravitational-wave foreground informed by the population. Through the use of Fisher estimates, we construct a likelihood function for the measurement error of the LISA-bright DWD binaries (≥20 SNR,fGW≥ 5 mHz), in their gravitational-wave frequency (fGW) and chirp mass. By repeating this process for different assumptions of the common-envelope ejection efficiency, we apply Bayesian hierarchical inference to find the best match to an injected astrophysical assumption for a fiducial population model. We conclude that the impact of common-envelope ejection efficiency on the mass-transfer processes involved in DWD formation may be statistically relevant in the future observed LISA population, and that constraints on binary formation may be found by comparing simulated populations to a future observed population. 
    more » « less
  4. Abstract Stellar-mass black hole binaries (BHBs) in galactic nuclei are gravitationally perturbed by the central supermassive black hole (SMBH) of the host galaxy, potentially inducing strong eccentricity oscillations through the eccentric Kozai–Lidov mechanism. These highly eccentric binaries emit a train of gravitational-wave (GW) bursts detectable by the Laser Interferometer Space Antenna (LISA)—a planned space-based GW detector—with signal-to-noise ratios up to ∼100 per burst. In this work, we study the GW signature of BHBs orbiting our galaxy’s SMBH, Sgr A*, which are consequently driven to very high eccentricities. We demonstrate that an unmodeled approach using a wavelet decomposition of the data effectively yields the time-frequency properties of each burst, provided that the GW frequency peaks between 10−3and 10−1Hz. The wavelet parameters may be used to infer the eccentricity of the binary, measuring log 10 ( 1 e ) within an error of 20%. Our proposed search method can thus constrain the parameter space to be sampled by complementary Bayesian inference methods, which use waveform templates or orthogonal wavelets to reconstruct and subtract the signal from LISA data. 
    more » « less
  5. Many gravitational wave (GW) sources in the LISA band are expected to have non-negligible eccentricity. Furthermore, many of them can undergo acceleration because they reside in the presence of a tertiary. Here we develop analytical and numerical methods to quantify how the compact binary's eccentricity enhances the detection of its peculiar acceleration. We show that the general relativistic precession pattern can disentangle the binary's acceleration-induced frequency shift from the chirp-mass-induced frequency shift in GW template fitting, thus relaxing the signal-to-noise ratio requirement for distinguishing the acceleration by a factor of 10 ∼100 . Moreover, by adopting the GW templates of the accelerating eccentric compact binaries, we can enhance the acceleration measurement accuracy by a factor of ∼100 , compared to the zero-eccentricity case, and detect the source's acceleration even if it does not change during the observational time. For example, a stellar-mass binary black hole (BBH) with moderate eccentricity in the LISA band yields an error of the acceleration measurement ∼10-7 m .s−2 for SNR =20 and observational time of 4 yr. In this example, we can measure the BBHs' peculiar acceleration even when it is ∼1 pc away from a 4 ×106M⊙ supermassive black hole. Our results highlight the importance of eccentricity to the LISA-band sources and show the necessity of developing GW templates for accelerating eccentric compact binaries. 
    more » « less