skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mayr-Dorn, Christoph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When dealing with safety–critical systems, various regulations, standards, and guidelines stipulate stringent requirements for certification and traceability of artifacts, but typically lack details with regards to the corresponding software engineering process. Given the industrial practice of only using semi-formal notations for describing engineering processes – with the lack of proper tool mapping – engineers and developers need to invest a significant amount of time and effort to ensure that all steps mandated by quality assurance are followed. The sheer size and complexity of systems and regulations make manual, timely feedback from Quality Assurance (QA) engineers infeasible. In order to address these issues, in this paper, we propose a novel framework for tracking, and “passively” executing processes in the background, automatically checking QA constraints depending on process progress, and informing the developer of unfulfilled QA constraints. We evaluate our approach by applying it to three case studies: a safety–critical open-source community system, a safety–critical system in the air-traffic control domain, and a non-safety–critical, web-based system. Results from our analysis confirm that trace links are often corrected or completed after the work step has been considered finished, and the engineer has already moved on to another step. Thus, support for timely and automated constraint checking has significant potential to reduce rework as the engineer receives continuous feedback already during their work step. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Regulations, standards, and guidelines for safety-critical systems stipulate stringent traceability but do not prescribe the corresponding, detailed software engineering process. Given the industrial practice of using only semi-formal notations to describe engineering processes, processes are rarely ``executable'' and developers have to spend significant manual effort in ensuring that they follow the steps mandated by quality assurance. The size and complexity of systems and regulations makes manual, timely feedback from Quality Assurance (QA) engineers infeasible. In this paper we propose a novel framework for tracking processes in the background, automatically checking QA constraints depending on process progress, and informing the developer of unfulfilled QA constraints. We evaluate our approach by applying it to two different case studies; one open source community system and a safety-critical system in the air-traffic control domain. Results from the analysis show that trace links are often corrected or completed after the fact and thus timely and automated constraint checking support has significant potential on reducing rework. 
    more » « less