skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mazzoleni, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In traditional hydraulic robotics, actuators must be sized for the highest possible load, resulting in significant energy losses when operating in lower force regimes. Variable recruitment fluidic artificial muscle (FAM) bundles offer a novel bio-inspired solution to this problem. Divided into individual MUs, each with its own control valve, a variable recruitment FAM bundle uses a switching control scheme to selectively bring MUs online according to load demand. To date, every dynamic variable recruitment study in the literature has considered homogeneous bundles containing MUs of equal size. However, natural mammalian muscle MUs are heterogeneous and primarily operate based on Henneman’s size principle, which states that MUs are recruited from smallest to largest for a given task. Is it better for a FAM variable recruitment bundle to operate according to this principle, or are there other recruitment orders that result in better performance? What are the appropriate criteria for switching between recruitment states for these different recruitment orders? This paper seeks to answer these questions by performing two case studies exploring different bundle MU size distributions, analyzing the tradeoffs between tracking performance and energetics, and determining how these tradeoffs are affected by different MU recruitment order and recruitment state transition thresholds. The only difference between the two test cases is the overall force capacity (i.e. total size) of the bundle. For each test case, a Pareto frontier for different MU size distributions, recruitment orders, and recruitment state transition thresholds is constructed. The results show that there is a complex relationship between overall bundle size, MU size distributions, recruitment orders, and recruitment state transition thresholds corresponding to the best tradeoffs change along the Pareto frontier. Overall, these two case studies validate the use of Henneman’s Size Principle as a variable recruitment strategy, but also demonstrate that it should not be the only variable recruitment method considered. They also motivate the need for a more complex variable recruitment scheme that dynamically changes the recruitment state transition threshold and recruitment order based on loading conditions and known system states, along with a co-design problem that optimizes total bundle size and MU size distribution.

     
    more » « less
    Free, publicly-accessible full text available July 29, 2025
  2. Hardware-in-the-loop (HIL) testing is a popular control system testing method because it bridges the gap between modeling/simulation and experiments. Instead of designing a full hardware-based experiment to validate the results of a simulation, the plant hardware can be replaced with an emulator device that responds to exogenous inputs and effectively emulates the dynamic behavior of a system. This approach can be more cost-effective and modular, since the emulated plant system can be modeled in a simulation environment, implemented on a simplified piece of hardware and changed quickly without having to fabricate new parts. This paper develops the hardware and control scheme for a certain type of HIL device called a dynamic load emulator that consists of a 1-DOF linear hydraulic dynamometer equipped with in-line sensing to measure both its own position and the force exerted on it by a device-under-test. This measured force is passed to a real-time model of the emulated dynamic system. The model outputs the emulated system position, and a closed-loop controller is used to emulate this position. The emulator controller incorporates both model-based feedforward and standard feedback PI control. This paper characterizes the dynamometer-based dynamic load emulator and its controller, determining its hardware limitations and validating its capabilities when experiencing a force input from a linear spring with known parameters. Additionally, this paper demonstrates the ability of the emulator to represent the dynamics of a 1-DOF robotic joint when actuated by a pair of fluidic artificial muscles (FAMs). The primary contribution of this work is to allow for more comprehensive testing of FAM configurations, topologies, and controllers for a wide range of parameters, because the same hardware can be used to emulate multiple systems. As a result, this work will lead to more cost-effective, time-efficient, and energy-efficient designs of robotic systems and the FAMs used to actuate them.

     
    more » « less
  3. Lakhtakia, Akhlesh ; Martín-Palma, Raúl J. ; Knez, Mato (Ed.)
    Fluidic artificial muscles (FAMs) have emerged as a viable and popular robotic actuation technique due to their low cost, compliant nature, and high force-to-weight-ratio. In recent years, the concept of variable recruitment has emerged as a way to improve the efficiency of conventional hydraulic robotic systems. In variable recruitment, groups of FAMs are bundled together and divided into individual motor units. Each motor unit can be activated independently, which is similar to the sequential activation pattern observed in mammalian muscle. Previous researchers have performed quasistatic characterizations of variable recruitment bundles and some simple dynamic analyses and experiments with a simple 1- DOF robot arm. We have developed a linear hydraulic characterization testing platform that will allow for the testing of different types of variable recruitment bundle configurations under different loading conditions. The platform consists of a hydraulic drive cylinder that acts as a cyber-physical hardware-in-the-loop dynamic loading emulator and interfaces with the variable recruitment bundle. The desired inertial, damping and stiffness properties of the emulator can be prescribed and achieved through an admittance controller. In this paper, we test the ability of this admittance controller to emulate different inertial, stiffness, and damping properties in simulation and demonstrate that it can be used in hardware through a proof-of-concept experiment. The primary goal of this work is to develop a unique testing setup that will allow for the testing of different FAM configurations, controllers, or subsystems and their responses to different dynamic loads before they are implemented on more complex robotic systems. 
    more » « less
  4. Abstract Fluidic artificial muscles (FAMs) are a popular actuation choice due to their compliant nature and high force-to-weight ratio. Variable recruitment is a bio-inspired actuation strategy in which multiple FAMs are combined into motor units that can be pressurized sequentially according to load demand. In a traditional ‘fixed-end’ variable recruitment FAM bundle, inactive units and activated units that are past free strain will compress and buckle outward, resulting in resistive forces that reduce overall bundle force output, increase spatial envelope, and reduce operational life. This paper investigates the use of inextensible tendons as a mitigation strategy for preventing resistive forces and outward buckling of inactive and submaximally activated motor units in a variable recruitment FAM bundle. A traditional analytical fixed-end variable recruitment FAM bundle model is modified to account for tendons, and the force–strain spaces of the two configurations are compared while keeping the overall bundle length constant. Actuation efficiency for the two configurations is compared for two different cases: one case in which the radii of all FAMs within the bundle are equivalent, and one case in which the bundles are sized to consume the same amount of working fluid volume at maximum contraction. Efficiency benefits can be found for either configuration for different locations within their shared force–strain space, so depending on the loading requirements, one configuration may be more efficient than the other. Additionally, a study is performed to quantify the increase in spatial envelope caused by the outward buckling of inactive or low-pressure motor units. It was found that at full activation of recruitment states 1, 2, and 3, the tendoned configuration has a significantly higher volumetric energy density than the fixed-end configuration, indicating that the tendoned configuration has more actuation potential for a given spatial envelope. Overall, the results show that using a resistive force mitigation strategy such as tendons can completely eliminate resistive forces, increase volumetric energy density, and increase system efficiency for certain loading cases. Thus, there is a compelling case to be made for the use of tendoned FAMs in variable recruitment bundles. 
    more » « less
  5. Abstract Biological musculature employs variable recruitment of muscle fibers from smaller to larger units as the load increases. This orderly recruitment strategy has certain physiological advantages like minimizing fatigue and providing finer motor control. Recently fluidic artificial muscles (FAM) are gaining popularity as actuators due to their increased efficiency by employing bio-inspired recruitment strategies such as active variable recruitment (AVR). AVR systems use a multi-valve system (MVS) configuration to selectively recruit individual FAMs depending on the load. However, when using an MVS configuration, an increase in the number of motor units in a bundle corresponds to an increase in the number of valves in the system. This introduces greater complexity and weight. The objective of this paper is to propose, analyze, and demonstrate an orderly recruitment valve (ORV) concept that enables orderly recruitment of multiple FAMs in the system using a single valve. A mathematical model of an ORV-controlled FAM bundle is presented and validated by experiments performed on a proof-of-concept ORV experiment. The modeling is extended to explore a case study of a 1-DOF robot arm system consisting of an electrohydraulic pressurization system, ORV, and a FAM-actuated rotating arm plant and its dynamics are simulated to further demonstrate the capabilities of an ORV-controlled closed-loop system. An orderly recruitment strategy was implemented through a model-based feed forward controller. To benchmark the performance of the ORV, a conventional MVS with equivalent dynamics and controller was also implemented. Trajectory tracking simulations on both the systems revealed lower tracking error for the ORV controlled system compared to the MVS controlled system due to the unique cross-flow effects present in the ORV. However, the MVS, due to its independent and multiple valve setup, proved to be more adaptable for performance. For example, modifications to the recruitment thresholds of the MVS demonstrated improvement in tracking error, albeit with a sacrifice in efficiency. In the ORV, tracking performance remained insensitive to any variation in recruitment threshold. The results show that compared to the MVS, the ORV offers a simpler and more compact valving architecture at the expense of moderate losses in control flexibility and performance. 
    more » « less
  6. Lakhtakia, Akhlesh ; Martín-Palma, Raúl J. ; Knez, Mato (Ed.)
    This paper investigates the effect of resistive forces that arise in compressed fluidic artificial muscles (FAMs) within a variable recruitment bundle. Much like our skeletal muscle organs that selectively recruit different number of motor fibers depending on the load demand, a variable recruitment FAM bundle adaptively activates the minimum number of motor units (MUs) to increase its overall efficiency. A variable recruitment bundle may operate in different recruitment states (RSs) during which only a subset of the FAMs within a bundle are activated. In such cases, a difference in strain occurs between active FAMs and inactive/low-pressure FAMs. This strain difference results in the compression of inactive/lowpressure FAMs causing them to exert a resistive force opposing the force output of active FAMs. This paper presents experimental measurements for a FAM for both tensile and compressive regions. The data is used to simulate the overall force-strain space of a variable recruitment bundle for when resistive force effects are neglected and when they are included. Counterintuitively, an initial decrease in bundle free strain is observed when a transition to a higher RS is made due to the presence of resistive forces. We call this phenomenon the free strain gradient reversal of a variable recruitment bundle. The paper is concluded with a discussion of the implications of this phenomenon. 
    more » « less
  7. null (Ed.)
    Fluidic artificial muscles (FAMs), also known as McKibben actuators, are a class of fiber-reinforced soft actuators that can be pneumatically or hydraulically pressurized to produce muscle-like contraction and force generation. When multiple FAMs are bundled together in parallel and selectively pressurized, they can act as a multi-chambered actuator with bioinspired variable recruitment capability. The variable recruitment bundle consists of motor units (MUs)—groups of one of more FAMs—that are independently pressurized depending on the force demand, similar to how groups of muscle fibers are sequentially recruited in biological muscles. As the active FAMs contract, the inactive/low-pressure units are compressed, causing them to buckle outward, which increases the spatial envelope of the actuator. Additionally, a FAM compressed past its individual free strain applies a force that opposes the overall force output of active FAMs. In this paper, we propose a model to quantify this resistive force observed in inactive and low-pressure FAMs and study its implications on the performance of a variable recruitment bundle. The resistive force behavior is divided into post-buckling and post-collapse regions and a piecewise model is devised. An empirically-based correction method is proposed to improve the model to fit experimental data. Analysis of a bundle with resistive effects reveals a phenomenon, unique to variable recruitment bundles, defined as free strain gradient reversal. 
    more » « less
  8. null (Ed.)
    Variable recruitment fluidic artificial muscle (FAM) bundles consist of multiple FAMs arranged in motor units that are sequentially activated as load demand increases. The conventional configuration of a variable recruitment FAM bundle requires a valve for each motor unit, which is referred to as a multi-valve system (MVS). As each motor unit within the bundle is selectively recruited, this configuration is highly adaptable and flexible in performance. However, as the number of motor units increases, the valve network can become complex and heavy in its design. To decrease complexity and weight, the concept of an orderly recruitment valve (ORV) has been proposed and analyzed. The ORV allows multiple motor units to be controlled using a single valve that recruits and pressurizes all motor units. The ORV concept consists of a spool valve with multiple outlet ports and a motor unit connected to each port. A linear actuator controls the position of the spool, allowing fluid flow into each port in succession. Naturally, de-recruitment happens in reverse order. The objective of the ORV is to strike a balance between performance and compactness of design. The purpose of this paper is to present analytical modeling that can be used to understand the behavior and performance of an ORV system and develop an experimental proof-of-concept that illustrates the ORV operation in hardware. A pneumatic ORV prototype was constructed and used to actuate two FAMs sequentially, each representing a motor unit. The results demonstrate the ORV as a compact system with which a variable recruitment bundle with multiple recruitment states can be controlled. 
    more » « less
  9. Lakhtakia, Akhlesh ; Martín-Palma, Raúl J. ; Knez, Mato (Ed.)
  10. This paper experimentally investigates the mechanical behavior of inactive and low-pressure fluidic artificial muscle (FAM) actuators under applied axial load. In most cases, the active characteristics of an actuator are of interest because they provide valuable information about its force-strain relationship. However, a system of actuators requires attention to the interaction between individual units. One such configuration is a bundle of McKibben artificial muscle actuators arranged in parallel and used for load-adaptive variable recruitment. This bio-inspired actuator bundle sequentially increases the number of actuators activated depending on the load required, which is analogous to how motor units are recruited in a mammalian muscle tissue. While using the minimum number of actuators allows the bundle to operate efficiently, the resistive force of inactive elements acts against total bundle contraction due to their inherent stiffness. In addition, when the bundle transitions between recruitment levels, motor units for a given recruitment level may be gradually pressurized; these low-pressure motor units can also cause resistive forces. Experiments were conducted to characterize the complex interaction between the bladder and braided mesh that cause the resistive force and deflection of inactive and low-pressure elements. Based on observations made from experiments, the paper proposes the initial criteria for developing a model of the resistive forces of a McKibben actuator, both individually, and within the context of a variable recruitment bundle. 
    more » « less