skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCann, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present an algorithm that canonicalizes the algebraic representations of the topological semantics of machine knitting programs. Machine knitting is a staple technology of modern textile production where hundreds of mechanical needles are manipulated to form yarn into interlocking loop structures. Our semantics are defined using a variant of a monoidal category, and they closely correspond to string diagrams. We formulate our canonicalization as an Abstract Rewriting System (ARS) over words in our category, and prove that our algorithm is correct and runs in polynomial time. 
    more » « less
    Free, publicly-accessible full text available August 5, 2026
  2. Free, publicly-accessible full text available April 25, 2026
  3. Clinical practice guidelines, care pathways, and protocols are designed to support evidence-based practices for clinicians; however, their adoption remains a challenge. We set out to investigate why clinicians deviate from the “Wake Up and Breathe” protocol, an evidence-based guideline for liberating patients from mechanical ventilation in the intensive care unit (ICU). We conducted over 40 hours of direct observations of live clinical workflows, 17 interviews with frontline care providers, and 4 co-design workshops at three different medical intensive care units. Our findings indicate that unlike prior literature suggests, disagreement with the protocol is not a substantial barrier to adoption. Instead, the uncertainty surrounding the application of the protocol for individual patients leads clinicians to deprioritize adoption in favor of tasks where they have high certainty. Reflecting on these insights, we identify opportunities for technical systems to help clinicians in effectively executing the protocol and discuss future directions for HCI research to support the integration of protocols into clinical practice in complex, team-based healthcare settings. 
    more » « less
  4. Programming low-level controls for knitting machines is a meticulous, time-consuming task that demands specialized expertise. Recently, there has been a shift towards automatically generating low-level knitting machine programs from high-level knit representations that describe knit objects in a more intuitive, user-friendly way. Current high-level systems trade off expressivity for ease-of-use, requiring ad-hoc trapdoors to access the full space of machine capabilities, or eschewing completeness in the name of utility. Thus, advanced techniques either require ad-hoc extensions from domain experts, or are entirely unsupported. Furthermore, errors may emerge during the compilation from knit object representations to machine instructions. While the generated program may describe a valid machine control sequence, the fabricated object is topologically different from the specified input, with little recourse for understanding and fixing the issue. To address these limitations, we introduceinstruction graphs, an intermediate representation capable of capturing the full range of machine knitting programs. We define a semantic mapping from instruction graphs to fenced tangles, which make them compatible with the established formal semantics for machine knitting instructions. We establish a semantics-preserving bijection between machine knittable instruction graphs and knit programs that proves three properties - upward, forward, and ordered (UFO) - are both necessary and sufficient to ensure the existence of a machine knitting program that can fabricate the fenced tangle denoted by the graph. As a proof-of-concept, we implement an instruction graph editor and compiler that allows a user to transform an instruction graph into UFO presentation and then compile it to a machine program, all while maintaining semantic equivalence. In addition, we use the UFO properties to more precisely characterize the limitations of existing compilers. This work lays the groundwork for more expressive and reliable automated knitting machine programming systems by providing a formal characterization of machine knittability. 
    more » « less
  5. We show that a linear model is sufficient to accurately estimate the quantity of yarn that goes into a knitted item produced on an automated knitting machine. Knitted fabrics are complex structures, yet their diverse properties arise from the arrangement of a small number of discrete, additive operations. One can estimate the masses of each of these basic yarn additions using linear regression and, in turn, use these masses to estimate the overall quantity (and local distribution) of yarn within any knitted fabric. Our proposed linear model achieves low error on a range of fabrics and generalizes to different yarns and stitch sizes. This paves the way for applications where having a known yarn distribution is important for accuracy (e.g., simulation) or cost estimation (e.g., design). 
    more » « less
  6. Weaving is a fabrication process that is grounded in mathematics and engineering: from the binary, matrix-like nature of the pattern drafts weavers have used for centuries, to the punch card programming of the first Jacquard looms. This intersection of disciplines provides an opportunity to ground abstract mathematical concepts in a concrete and embodied art, viewing this textile art through the lens of engineering. Currently, available looms are not optimized to take advantage of this opportunity to increase mathematics learning by providing hands-on interdisciplinary learning in collegiate classrooms. In this work, we present SPEERLoom: an open-source, robotic Jacquard loom kit designed to be a tool for interweaving cloth fabrication, mathematics, and engineering to support interdisciplinary learning in the classroom. We discuss the design requirements and subsequent design of SPEERLoom. We also present the results of a pilot study in a post-secondary class finding that SPEERLoom supports hands-on, interdisciplinary learning of math, engineering, and textiles. 
    more » « less
  7. Machine knitting is a well-established fabrication technique for complex soft objects, and both companies and researchers have developed tools for generating machine knitting patterns. However, existing representations for machine knitted objects are incomplete (do not cover the complete domain of machine knittable objects) or overly specific (do not account for symmetries and equivalences among knitting instruction sequences). This makes it difficult to define correctness in machine knitting, let alone verify the correctness of a given program or program transformation. The major contribution of this work is a formal semantics for knitout, a low-level Domain Specific Language for knitting machines. We accomplish this by using what we call the "fenced tangle," which extends concepts from knot theory to allow for a mathematical definition of knitting program equivalence that matches the intuition behind knit objects. Finally, using this formal representation, we prove the correctness of a sequence of rewrite rules; and demonstrate how these rewrite rules can form the foundation for higher-level tasks such as compiling a program for a specific machine and optimizing for time/reliability, all while provably generating the same knit object under our proposed semantics. By establishing formal definitions of correctness, this work provides a strong foundation for compiling and optimizing knit programs. 
    more » « less
  8. Tactile sensing is essential for robots to perceive and react to the environment. However, it remains a challenge to make large-scale and flexible tactile skins on robots. Industrial machine knitting provides solutions to manufacture customiz-able fabrics. Along with functional yarns, it can produce highly customizable circuits that can be made into tactile skins for robots. In this work, we present RobotSweater, a machine-knitted pressure-sensitive tactile skin that can be easily applied on robots. We design and fabricate a parameterized multi-layer tactile skin using off-the-shelf yarns, and characterize our sensor on both a flat testbed and a curved surface to show its robust contact detection, multi-contact localization, and pressure sensing capabilities. The sensor is fabricated using a well-established textile manufacturing process with a programmable industrial knitting machine, which makes it highly customizable and low-cost. The textile nature of the sensor also makes it easily fit curved surfaces of different robots and have a friendly appearance. Using our tactile skins, we conduct closed-loop control with tactile feedback for two applications: (1) human lead-through control of a robot arm, and (2) human-robot interaction with a mobile robot. 
    more » « less
  9. A scarf is inherently reconfigurable: wearers often use it as a neck wrap, a shawl, a headband, a wristband, and more. We developed uKnit, a scarf-like soft sensor with scarf-like reconfigurability, built with machine knitting and electrical impedance tomography sensing. Soft wearable devices are comfortable and thus attractive for many human-computer interaction scenarios. While prior work has demonstrated various soft wearable capabilities, each capability is device- and location-specific, being incapable of meeting users’ various needs with a single device. In contrast, uKnit explores the possibility of one-soft-wearable-for-all. We describe the fabrication and sensing principles behind uKnit, demonstrate several example applications, and evaluate it with 10-participant user studies and a washability test. uKnit achieves 88.0%/78.2% accuracy for 5-class worn-location detection and 80.4%/75.4% accuracy for 7-class gesture recognition with a per-user/universal model. Moreover, it identifies respiratory rate with an error rate of 1.25 bpm and detects binary sitting postures with an average accuracy of 86.2%. 
    more » « less
  10. Mueller, Florian Floyd; Kyburz, Penny; Williamson, Julie R; Sas, Corina; Wilson, Max L; Dugas, Phoebe Toups; Shklovski, Irina (Ed.)
    Advances in artificial intelligence (AI) have enabled unprecedented capabilities, yet innovation teams struggle when envisioning AI concepts. Data science teams think of innovations users do not want, while domain experts think of innovations that cannot be built. A lack of effective ideation seems to be a breakdown point. How might multidisciplinary teams identify buildable and desirable use cases? This paper presents a first hand account of ideating AI concepts to improve critical care medicine. As a team of data scientists, clinicians, and HCI researchers, we conducted a series of design workshops to explore more effective approaches to AI concept ideation and problem formulation. We detail our process, the challenges we encountered, and practices and artifacts that proved effective. We discuss the research implications for improved collaboration and stakeholder engagement, and discuss the role HCI might play in reducing the high failure rate experienced in AI innovation. 
    more » « less