skip to main content


This content will become publicly available on October 8, 2024

Title: Estimating Yarn Length for Machine-Knitted Structures
We show that a linear model is sufficient to accurately estimate the quantity of yarn that goes into a knitted item produced on an automated knitting machine. Knitted fabrics are complex structures, yet their diverse properties arise from the arrangement of a small number of discrete, additive operations. One can estimate the masses of each of these basic yarn additions using linear regression and, in turn, use these masses to estimate the overall quantity (and local distribution) of yarn within any knitted fabric. Our proposed linear model achieves low error on a range of fabrics and generalizes to different yarns and stitch sizes. This paves the way for applications where having a known yarn distribution is important for accuracy (e.g., simulation) or cost estimation (e.g., design).  more » « less
Award ID(s):
1955444
NSF-PAR ID:
10488076
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the 8th ACM Symposium on Computational Fabrication
Subject(s) / Keyword(s):
["machine knitting","linear regression","yarn estimation","automated fabrication"]
Format(s):
Medium: X
Location:
New York City, NY, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Knitting turns yarn, a 1D material, into a 2D fabric that is flexible, durable, and can be patterned to adopt a wide range of 3D geometries. Like other mechanical metamaterials, the elasticity of knitted fabrics is an emergent property of the local stitch topology and pattern that cannot solely be attributed to the yarn itself. Thus, knitting can be viewed as an additive manufacturing technique that allows for stitch-by-stitch programming of elastic properties and has applications in many fields ranging from soft robotics and wearable electronics to engineered tissue and architected materials. However, predicting these mechanical properties based on the stitch type remains elusive. Here we untangle the relationship between changes in stitch topology and emergent elasticity in several types of knitted fabrics. We combine experiment and simulation to construct a constitutive model for the nonlinear bulk response of these fabrics. This model serves as a basis for composite fabrics with bespoke mechanical properties, which crucially do not depend on the constituent yarn.

     
    more » « less
  2. Abstract

    Textile devices have benefited from the discovery of new conductive materials and innovations in textile device design. These devices include textile‐based supercapacitors (TSCs), encompassing fiber, yarn, and fabric supercapacitors, which have demonstrated practical value in powering wearable devices. Recent review articles have highlighted the limited energy density of TSCs as an important challenge, demanding new electrode materials with higher electronic conductivity and theoretical capacitance than present materials. Ti3C2Tx, a member of the MXene family, is known for its metallic conductivity and high volumetric capacitance in acidic electrolytes due to its pseudocapacitive behavior. Driven by these excellent properties, recent literature has reported promising integration methods of Ti3C2Txinto TSCs with significantly improved areal and volumetric capacitance compared with non‐MXene‐based TSCs. Furthermore, knitted MXene‐based TSCs demonstrated practical application of wearable energy storage devices in textiles. Herein, the techniques used to produce MXene‐based fibers, yarns, and fabrics and the progress in architecture design and performance metrics are highlighted. Challenges regarding the introduction of this new material into fiber/yarn/fabric architectures are discussed, which will inform the development of textile‐based devices beyond energy storage applications. Opportunities surrounding the development of MXene‐based fibers with tunable mechanical, electrical, and electrochemical properties are proposed, which will be the direction of future research efforts.

     
    more » « less
  3. Abstract

    Soft robots adapt passively to complex environments due to their inherent compliance, allowing them to interact safely with fragile or irregular objects and traverse uneven terrain. The vast tunability and ubiquity of textiles has enabled new soft robotic capabilities, especially in the field of wearable robots, but existing textile processing techniques (e.g., cut‐and‐sew, thermal bonding) are limited in terms of rapid, additive, accessible, and waste‐free manufacturing. While 3D knitting has the potential to address these limitations, an incomplete understanding of the impact of structure and material on knit‐scale mechanical properties and macro‐scale device performance has precluded the widespread adoption of knitted robots. In this work, the roles of knit structure and yarn material properties on textile mechanics spanning three regimes–unfolding, geometric rearrangement, and yarn stretching–are elucidated and shown to be tailorable across unique knit architectures and yarn materials. Based on this understanding, 3D knit soft actuators for extension, contraction, and bending are constructed. Combining these actuation primitives enables the monolithic fabrication of entire soft grippers and robots in a single‐step additive manufacturing procedure suitable for a variety of applications. This approach represents a first step in seamlessly “printing” conformal, low‐cost, customizable textile‐based soft robots on‐demand.

     
    more » « less
  4. The authors of this research investigate the possibility of fabricating shell-based cellular structures using knitting techniques. Shellular Funicular Structures are two-manifold single-layer structures that can be designed in the context of graphic statics. These are efficient compression/tension-only structures that have been designed for a certain boundary condition. Although the shellular funicular structures are efficient geometries in transferring the forces, the fabrication process is challenging due to the geometric complexity of the structure. Since Shellular structures comprise a single surface, they are suitable candidates to be fabricated using knitting technique, a method by which yarn is manipulated to create a textile or fabric. Using knitting approach, one can fabricate shellular structures with minimum production waste in which the knit can work as a formwork for actual structure or act as a composite structure combined with bio-based resin. This research proposes a workflow to fabricate shellular structures using knitting that can be scaled up for industrial purposes. In this process, the designed shellular structures are divided into multiple sections that can be unrolled into planar geometries. These geometries are optimized based on the elastic forces in the knitted network and knitted and sewn to make a topologically complex geometry of the shellular systems. After assembling the knitted parts and applying external forces at the boundaries, the final configuration of the structural form in tension is achieved. Then this form is impregnated with custom bio-resin blends from chitosan, sodium alginate, and silk fibroin to stiffen the soft knit structures into a compressed system. Although this method is an efficient fabrication technique for constructing shellular structures, it needs to be translated into an optimized method of cutting, knitting, and sewing with respect to the complexity of the shellular geometry. As a proof of concept of the proposed workflow, a mesoscale shellular structure is fabricated. Keywords: Biocomposite Structures, Shellular Funicular Structures, Knitting, Graphic statics. 
    more » « less
  5. We report a flexible and wearable bacteria-powered battery in which four functional yarns are placed in parallel for biological energy harvesting. A current collecting yarn is sandwiched between two conductive/hydrophilic active yarns including electricity-generating bacteria while a polymer-passivated cathodic yarn is located next to one of the active yarns to form a biological fuel cell configuration. The device uses Shewanella oneidensis MR-1 as a biocatalyst to produce a maximum power of 17μW/cm3 and current density 327μA/cm3, which are enough to power small-power applications. This yarn-structured biobattery can be potentially woven or knitted into an energy storage fabric to provide a higher power for smart textiles. Furthermore, sweat generated from the human body can be a potential fuel to support bacterial viability, providing the long-term operation of the battery. 
    more » « less