skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Estimating Yarn Length for Machine-Knitted Structures
We show that a linear model is sufficient to accurately estimate the quantity of yarn that goes into a knitted item produced on an automated knitting machine. Knitted fabrics are complex structures, yet their diverse properties arise from the arrangement of a small number of discrete, additive operations. One can estimate the masses of each of these basic yarn additions using linear regression and, in turn, use these masses to estimate the overall quantity (and local distribution) of yarn within any knitted fabric. Our proposed linear model achieves low error on a range of fabrics and generalizes to different yarns and stitch sizes. This paves the way for applications where having a known yarn distribution is important for accuracy (e.g., simulation) or cost estimation (e.g., design).  more » « less
Award ID(s):
1955444
PAR ID:
10488076
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the 8th ACM Symposium on Computational Fabrication
ISBN:
9798400703195
Subject(s) / Keyword(s):
machine knitting linear regression yarn estimation automated fabrication
Format(s):
Medium: X
Location:
New York City, NY, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Knitting interloops one-dimensional yarns into three-dimensional fabrics that exhibit behaviour beyond their constitutive materials. How extensibility and anisotropy emerge from the hierarchical organization of yarns into knitted fabrics has long been unresolved. We seek to unravel the mechanical roles of tensile mechanics, assembly and dynamics arising from the yarn level on fabric nonlinearity by developing a yarn-based dynamical model. This physically validated model captures the mechanical response of knitted fabrics, analogous to flexible metamaterials and biological fibre networks due to geometric nonlinearity within such hierarchical systems. Fabric anisotropy originates from observed yarn–yarn rearrangements during alignment dynamics and is topology-dependent. This yarn-based model also provides a design space of knitted fabrics to embed functionalities by varying geometric configuration and material property in instructed procedures compatible to machine manufacturing. Our hierarchical approach to build up a knitted fabric computationally modernizes an ancient craft and represents a first step towards mechanical programmability of knitted fabrics in wide engineering applications. 
    more » « less
  2. Abstract Knitting turns yarn, a 1D material, into a 2D fabric that is flexible, durable, and can be patterned to adopt a wide range of 3D geometries. Like other mechanical metamaterials, the elasticity of knitted fabrics is an emergent property of the local stitch topology and pattern that cannot solely be attributed to the yarn itself. Thus, knitting can be viewed as an additive manufacturing technique that allows for stitch-by-stitch programming of elastic properties and has applications in many fields ranging from soft robotics and wearable electronics to engineered tissue and architected materials. However, predicting these mechanical properties based on the stitch type remains elusive. Here we untangle the relationship between changes in stitch topology and emergent elasticity in several types of knitted fabrics. We combine experiment and simulation to construct a constitutive model for the nonlinear bulk response of these fabrics. This model serves as a basis for composite fabrics with bespoke mechanical properties, which crucially do not depend on the constituent yarn. 
    more » « less
  3. We investigate the mechanical behavior of jammed knitted fabrics, where geometric confinement leads to an initially stiff mechanical response that softens into low stiffness behavior with additional applied stress. We show that the jammed regime is distinguished by changes in yarn geometry and contact rearrangement that must occur to allow the individual stitches to stretch. These rearrangements allow for the relaxation of high residual stresses that are present within jammed fabric, altering the low-strain response. We demonstrate that fabric jamming can be induced or reduced by changing either the constituent yarn or the fabric manufacturing parameters. Analysis of experimental samples shows that changing the “stitch size” in manufacturing affects both the in situ yarn radius and the length of yarn per stitch, both of which affect jamming. 
    more » « less
  4. null (Ed.)
    Machine knitting is an increasingly accessible fabrication technology for producing custom soft goods. However, recent machine knitting research has focused on knit shaping, or on adapting hand-knitting patterns. We explore a capability unique to machine knitting: producing multilayer spacer fabrics. These fabrics consist of two face layers connected by a monofilament filler yarn which gives the structure stiffness and volume. We show how to vary knit patterning and yarn parameters in spacer fabrics to produce tactile materials with embedded functionality for forming soft actuated mechanisms and sensors with tunable density, stiffness, material bias, and bristle properties. These soft mechanisms can be rapidly produced on a computationally-controlled v-bed knitting machine and integrated directly into soft objects. 
    more » « less
  5. Knitting creates complex, soft fabrics with unique texture properties that can be used to create interactive objects.However, little work addresses the challenges of designing and using knitted textures computationally. We present KnitPick: a pipeline for interpreting hand-knitting texture patterns into KnitGraphs which can be output to machine and hand-knitting instructions. Using KnitPick, we contribute a measured and photographed data set of 472 knitted textures. Based on findings from this data set, we contribute two algorithms for manipulating KnitGraphs. KnitCarving shapes a graph while respecting a texture, and KnitPatching combines graphs with disparate textures while maintaining a consistent shape. KnitPick is the first system to bridge the gap between hand- and machine-knitting when creating complex knitted textures. 
    more » « less