skip to main content

Search for: All records

Creators/Authors contains: "McCully, Curtis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a comparative study of two nearby type Ia supernovae (SNe Ia), 2018xx and 2019gbx, that exploded in NGC 4767 and MCG-02-33-017 at a distance of 48 Mpc and 60 Mpc, respectively. The B -band light curve decline rate for SN 2018xx is estimated to be 1.48 ± 0.07 mag and for SN 2019gbx it is 1.37 ± 0.07 mag. Despite the similarities in photometric evolution, quasi-bolometric luminosity, and spectroscopy between these two SNe Ia, SN 2018xx has been found to be fainter by about ∼0.38 mag in the B -band and has a lower 56 Ni yield. Their host galaxies have similar metallicities at the SN location, indicating that the differences between these two SNe Ia may be associated with the higher progenitor metallicity of SN 2018xx. Further inspection of the near-maximum-light spectra has revealed that SN 2018xx has relatively strong absorption features near 4300 Å relative to SN 2019gbx. The application of the code TARDIS fitting to the above features indicates that the absorption features near 4300 Å appear to be related to not only Fe  II /Mg  II abundance but possibly to the other element abundances as well. Moreover, SN 2018xx shows a weaker carbon absorption at earlier times, whichmore »is also consistent with higher ejecta metallicity.« less
    Free, publicly-accessible full text available July 1, 2024
  2. Abstract

    Rejecting cosmic rays (CRs) is essential for the scientific interpretation of CCD-captured data, but detecting CRs in single-exposure images has remained challenging. Conventional CR detectors require experimental parameter tuning for different instruments, and recent deep-learning methods only produce instrument-specific models that suffer from performance loss on telescopes not included in the training data. We present Cosmic-CoNN, a generic CR detector deployed for 24 telescopes at the Las Cumbres Observatory, which has been made possible by the three contributions in this work: (1) We build a large and diverse ground-based CR data set leveraging thousands of images from a global telescope network. (2) We propose a novel loss function and a neural network optimized for telescope imaging data to train generic CR-detection models. At 95% recall, our model achieves a precision of 93.70% on Las Cumbres imaging data and maintains a consistent performance on new ground-based instruments never used for training. Specifically, the Cosmic-CoNN model trained on the Las Cumbres CR data set maintains high precisions of 92.03% and 96.69% on Gemini GMOS-N/S 1 × 1 and 2 × 2 binning images, respectively. (3) We build a suite of tools including an interactive CR mask visualization and editing interface, consolemore »commands, and Python APIs to make automatic, robust CR detection widely accessible by the community of astronomers. Our data set, open-source code base, and trained models are available athttps://github.com/cy-xu/cosmic-conn.

    « less
  3. Abstract We present the optical photometric and spectroscopic analysis of two Type Iax supernovae (SNe), 2018cni and 2020kyg. SN 2018cni is a bright Type Iax SN ( M V ,peak = −17.81 ± 0.21 mag), whereas SN 2020kyg ( M V ,peak = −14.52 ± 0.21 mag) is a faint one. We derive 56 Ni mass of 0.07 and 0.002 M ⊙ and ejecta mass of 0.48 and 0.14 M ⊙ for SNe 2018cni and 2020kyg, respectively. A combined study of the bright and faint Type Iax SNe in R / r -band reveals that the brighter objects tend to have a longer rise time. However, the correlation between the peak luminosity and decline rate shows that bright and faint Type Iax SNe exhibit distinct behavior. Comparison with standard deflagration models suggests that SN 2018cni is consistent with the deflagration of a CO white dwarf, whereas the properties of SN 2020kyg can be better explained by the deflagration of a hybrid CONe white dwarf. The spectral features of both the SNe point to the presence of similar chemical species but with different mass fractions. Our spectral modeling indicates stratification at the outer layers and mixed inner ejecta for both ofmore »the SNe.« less
    Free, publicly-accessible full text available August 1, 2024
  4. Abstract

    Type Ibn supernovae (SNe) are a rare class of stellar explosions whose progenitor systems are not yet well determined. We present and analyze observations of the Type Ibn SN 2019kbj, and model its light curve in order to constrain its progenitor and explosion parameters. SN 2019kbj shows roughly constant temperature during the first month after peak, indicating a power source (likely circumstellar material interaction) that keeps the continuum emission hot at ∼15,000 K. Indeed, we find that the radioactive decay of56Ni is disfavored as the sole power source of the bolometric light curve. A radioactive decay + circumstellar material (CSM) interaction model, on the other hand, does reproduce the bolometric emission well. The fits prefer a uniform-density CSM shell rather than CSM due to a steady mass-loss wind, similar to what is seen in other Type Ibn SNe. The uniform-density CSM shell model requires ∼0.1Mof56Ni and ∼1Mtotal ejecta mass to reproduce the light curve. SN 2019kbj differs in this manner from another Type Ibn SN with derived physical parameters, SN 2019uo, for which an order of magnitude lower56Ni mass and larger ejecta mass were derived. This points toward a possible diversity in SN Ibn progenitor systems and explosions.

  5. Abstract We present near-infrared (NIR) and optical observations of the Type Ic supernova (SN Ic) SN 2021krf obtained between days 13 and 259 at several ground-based telescopes. The NIR spectrum at day 68 exhibits a rising K -band continuum flux density longward of ∼2.0 μ m, and a late-time optical spectrum at day 259 shows strong [O i ] 6300 and 6364 Å emission-line asymmetry, both indicating the presence of dust, likely formed in the SN ejecta. We estimate a carbon-grain dust mass of ∼2 × 10 −5 M ⊙ and a dust temperature of ∼900–1200 K associated with this rising continuum and suggest the dust has formed in SN ejecta. Utilizing the one-dimensional multigroup radiation-hydrodynamics code STELLA, we present two degenerate progenitor solutions for SN 2021krf, characterized by C–O star masses of 3.93 and 5.74 M ⊙ , but with the same best-fit 56 Ni mass of 0.11 M ⊙ for early times (0–70 days). At late times (70–300 days), optical light curves of SN 2021krf decline substantially more slowly than those expected from 56 Co radioactive decay. Lack of H and He lines in the late-time SN spectrum suggests the absence of significant interaction of the ejecta withmore »the circumstellar medium. We reproduce the entire bolometric light curve with a combination of radioactive decay and an additional powering source in the form of a central engine of a millisecond pulsar with a magnetic field smaller than that of a typical magnetar.« less
    Free, publicly-accessible full text available June 1, 2024
  6. Abstract

    Type Iax supernovae (SNe Iax) are the largest known class of peculiar white dwarf SNe, distinct from normal Type Ia supernovae (SNe Ia). The unique properties of SNe Iax, especially their strong photospheric lines out to extremely late times, allow us to model their optical spectra and derive the physical parameters of the long-lasting photosphere. We present an extensive spectral timeseries, including 21 new spectra, of SN Iax 2014dt from +11 to +562 days after maximum light. We are able to reproduce the entire timeseries with a self-consistent, nearly unaltered deflagration explosion model from Fink et al. usingTARDIS, an open source radiative-transfer code. We find that the photospheric velocity of SN 2014dt slows its evolution between +64 and +148 days, which closely overlaps the phase when we see SN 2014dt diverge from the normal spectral evolution of SNe Ia (+90 to +150 days). The photospheric velocity at these epochs, ∼400–1000 km s−1, may demarcate a boundary within the ejecta below which the physics of SNe Iax and normal SNe Ia differ. Our results suggest that SN 2014dt is consistent with a weak deflagration explosion model that leaves behind a bound remnant and drives an optically thick, quasi-steady-state wind creatingmore »the photospheric lines at late times. The data also suggest that this wind may weaken at epochs past +450 days, perhaps indicating a radioactive power source that has decayed away.

    « less
  7. Abstract We present the photometry of 16 91T/99aa-like Type Ia Supernovae (SNe Ia) observed by the Las Cumbres Observatory. We also use an additional set of 21 91T/99aa-like SNe Ia and 87 normal SNe Ia from the literature for an analysis of the standardizability of the luminosity of 91T/99aa-like SNe. We find that 91T/99aa-like SNe are 0.2 mag brighter than normal SNe Ia, even when fully corrected by the light-curve shapes and colors. The weighted rms of the 91T/99aa-like SNe (with z CMB > 0.01) Hubble residuals is 0.25 ± 0.03 mag, suggesting that 91T/99aa-like SNe are also excellent relative distance indicators to ±12%. We compare the Hubble residuals with the pseudo-equivalent width (pEW) of Si ii λλ 6355 around the date of maximum brightness. We find that there is a broken linear correlation between those two measurements for our sample including both 91T/99aa-like and normal SNe Ia. As the pEW max (Si ii λλ 6355) increases, the Hubble residual increases when pEW max (Si ii λλ 6355) < 55.6 Å. However, the Hubble residual stays constant beyond this. Given that 91T/99aa-like SNe possess shallower Si ii lines than normal SNe Ia, the linear correlation at pEW max (Si iimore »λλ 6355) < 55.6 Å can account for the overall discrepancy of Hubble residuals derived from the two subgroups. Such a systematic effect needs to be taken into account when using SNe Ia to measure luminosity distances.« less
    Free, publicly-accessible full text available October 1, 2023
  8. Abstract

    We present the densely sampled early light curve of the Type II supernova (SN) 2023ixf, first observed within hours of explosion in the nearby Pinwheel Galaxy (Messier 101; 6.7 Mpc). Comparing these data to recently updated models of shock-cooling emission, we find that the progenitor likely had a radius of 410 ± 10R. Our estimate is model dependent but consistent with a red supergiant. These models provide a good fit to the data starting about 1 day after the explosion, despite the fact that the classification spectrum shows signatures of circumstellar material around SN 2023ixf during that time. Photometry during the first day after the explosion, provided almost entirely by amateur astronomers, does not agree with the shock-cooling models or a simple power-law rise fit to data after 1 day. We consider the possible causes of this discrepancy, including precursor activity from the progenitor star, circumstellar interaction, and emission from the shock before or after it breaks out of the stellar surface. The very low luminosity (−11 mag >M> −14 mag) and short duration of the initial excess lead us to prefer a scenario related to prolonged emission from the SN shock traveling through the progenitor system.

  9. Abstract

    We present near- and mid-infrared (0.9–18μm) photometry of supernova (SN) 2021afdx, which was imaged serendipitously with the James Webb Space Telescope (JWST) as part of its Early Release Observations of the Cartwheel Galaxy. Our ground-based optical observations show it is likely to be a Type IIb SN, the explosion of a yellow supergiant, and its infrared spectral energy distribution (SED) ≈200 days after explosion shows two distinct components, which we attribute to hot ejecta and warm dust. By fitting models of dust emission to the SED, we derive a dust mass of(3.80.3+0.5)×103M, which is the highest yet observed in a Type IIb SN but consistent with other Type II SNe observed by the Spitzer Space Telescope. We also find that the radius of the dust is significantly larger than the radius of the ejecta, as derived from spectroscopic velocities during the photospheric phase, which implies that we are seeing an infrared echo off of preexisting dust in the progenitor environment, rather than dust newly formed by the SN. Our results show the power of JWST to address questions of dust formation in SNe, and therefore the presence of dust in the early universe,more »with much larger samples than have been previously possible.

    « less
  10. ABSTRACT

    We present optical photometric and spectroscopic analysis of a Type Iax supernova (SN) 2020rea situated at the brighter luminosity end of Type Iax supernovae (SNe). The light curve decline rate of SN 2020rea is Δm15(g)  = 1.31 ± 0.08 mag which is similar to SNe 2012Z and 2005hk. Modelling the pseudo-bolometric light curve with a radiation diffusion model yields a mass of 56Ni of 0.13 ± 0.01 M⊙ and an ejecta mass of 0.77$^{+0.11}_{-0.21}$ M⊙. Spectral features of SN 2020rea during the photospheric phase show good resemblance with SN 2012Z. TARDIS modelling of the early spectra of SN 2020rea reveals a dominance of Iron Group Elements (IGEs). The photospheric velocity of the Si ii line around maximum for SN 2020rea is ∼ 6500 km s−1 which is less than the measured velocity of the Fe ii line and indicates significant mixing. The observed physical properties of SN 2020rea match with the predictions of pure deflagration model of a Chandrasekhar mass C–O white dwarf. The metallicity of the host galaxy around the SN region is 12 + log(O/H)  = 8.56 ± 0.18 dex which is similar to that of SN 2012Z.