At centimeter wavelengths, single-dish observations have suggested that the Sagittarius (Sgr) B2 molecular cloud at the Galactic Center hosts weak maser emission from several organic molecules, including CH2NH, HNCNH, and HCOOCH3. However, the lack of spatial distribution information on these new maser species has prevented us from assessing the excitation conditions of the maser emission as well as their pumping mechanisms. Here, we present a mapping study toward Sgr B2 north (N) to locate the region where the complex maser emission originates. We report the first detection of the Class I methanol (CH3OH) maser at 84 GHz and the first interferometric map of the methanimine (CH2NH) maser at 5.29 GHz toward this region. In addition, we present a tool for modeling and fitting the unsaturated molecular maser signals with non-LTE radiative transfer models and Bayesian analysis using the Markov Chain Monte Carlo approach. These enable us to quantitatively assess the observed spectral profiles. The results suggest a two-chain-clump model for explaining the intense CH3OH Class I maser emission toward a region with low continuum background radiation. By comparing the spatial origin and extent of maser emission from several molecular species, we find that the 5.29 GHz CH2NH maser has a close spatial relationship with the 84 GHz CH3OH Class I masers. This relationship serves as observational evidence to suggest a similar collisional pumping mechanism for these maser transitions.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The interplay of the chemistry and physics that exists within astrochemically relevant sources can only be fully appreciated if we can gain a holistic understanding of their chemical inventories. Previous work by Lee et al. demonstrated the capabilities of simple regression models to reproduce the abundances of the chemical inventory of the Taurus Molecular Cloud 1 (TMC-1), as well as to provide abundance predictions for new candidate molecules. It remains to be seen, however, to what degree TMC-1 is a “unicorn” in astrochemistry, where the simplicity of its chemistry and physics readily facilitates characterization with simple machine learning models. Here we present an extension in chemical complexity to a heavily studied high-mass star-forming region: the Orion Kleinmann–Low (Orion KL) nebula. Unlike TMC-1, Orion KL is composed of several structurally distinct environments that differ chemically and kinematically, wherein the column densities of molecules between these components can have nonlinear correlations that cause the unexpected appearance or even lack of likely species in various environments. This proof-of-concept study used similar regression models sampled by Lee et al. to accurately reproduce the column densities from the XCLASS fitting program presented by Crockett et al.
-
ABSTRACT Two closely related isomeric pairs of cyanides, CH3[CN/NC] and H2C[CN/NC], are studied in cold, dark interstellar cloud conditions. In contrast to the diverse detections of methyl cyanide (CH3CN) in space, methyl isocyanide (CH3NC) has previously only been observed in warm and hot star-forming regions. We report the detection of CH3NC in the cold pre-stellar core Taurus Molecular Cloud (TMC-1) using the Green Bank Telescope with a detection significance of 13.4σ. Hyperfine transitions in H2CCN and quadrupole interactions in CH3CN and CH3NC were matched to a spectral line survey from the Green Bank Telescope Observations of TMC-1: Hunting for Aromatic Molecules large project on the Green Bank Telescope, resulting in abundances with respect to hydrogen of $1.92^{+0.13}_{-0.07} \times 10^{-9}$ for the cyanomethyl radical (H2CCN), $5.02^{+3.08}_{-2.06} \times 10^{-10}$ for CH3CN, and $2.97^{+2.10}_{-1.37} \times 10^{-11}$ for CH3NC. Efforts to model these molecules with the three-phase gas-grain code nautilus in TMC-1 conditions overproduce both CH3CN and CH3NC, though the ratio of ∼5.9 per cent is consistent across observations and models of these species. This may point to missing destruction routes in the model. The models capture the larger abundance of H2CCN well. Dissociative recombination is found to be the primary production route for these molecules, and reactions with abundant ions are found to be the primary destruction routes. H + CH3NC is investigated with transition state theory as a potential destruction route, but found to be too slow in cold cloud conditions to account for the discrepancy in modelled and observed abundances of CH3NC.
-
Abstract Molecular lines tracing the orbital motion of gas in a well-defined disk are valuable tools for inferring both the properties of the disk and the star it surrounds. Lines that arise only from a disk, and not also from the surrounding molecular cloud core that birthed the star or from the outflow it drives, are rare. Several such emission lines have recently been discovered in one example case, those from NaCl and KCl salt molecules. We studied a sample of 23 candidate high-mass young stellar objects (HMYSOs) in 17 high-mass star-forming regions to determine how frequently emission from these species is detected. We present five new detections of water, NaCl, KCl, PN, and SiS from the innermost regions around the objects, bringing the total number of known briny disk candidates to nine. Their kinematic structure is generally disk-like, though we are unable to determine whether they arise from a disk or outflow in the sources with new detections. We demonstrate that these species are spatially coincident in a few resolved cases and show that they are generally detected together, suggesting a common origin or excitation mechanism. We also show that several disks around HMYSOs clearly do not exhibit emission in these species. Salty disks are therefore neither particularly rare in high-mass disks, nor are they ubiquitous.more » « less
-
Abstract We report a comprehensive study of the cyanopolyyne chemistry in the prototypical prestellar core L1544. Using the 100 m Robert C. Byrd Green Bank Telescope, we observe three emission lines of HC3N, nine lines of HC5N, five lines of HC7N, and nine lines of HC9N. HC9N is detected for the first time toward the source. The high spectral resolution (∼0.05 km s−1) reveals double-peak spectral line profiles with the redshifted peak a factor 3–5 brighter. Resolved maps of the core in other molecular tracers indicate that the southern region is redshifted. Therefore, the bulk of the cyanopolyyne emission is likely associated with the southern region of the core, where free carbon atoms are available to form long chains, thanks to the more efficient illumination of the interstellar field radiation. We perform a simultaneous modeling of the HC5N, HC7N, and HC9N lines to investigate the origin of the emission. To enable this analysis, we performed new calculation of the collisional coefficients. The simultaneous fitting indicates a gas kinetic temperature of 5–12 K, a source size of 80″, and a gas density larger than 100 cm−3. The HC5N:HC7N:HC9N abundance ratios measured in L1544 are about 1:6:4. We compare our observations with those toward the well-studied starless core TMC-1 and with the available measurements in different star-forming regions. The comparison suggests that a complex carbon chain chemistry is active in other sources and is related to the presence of free gaseous carbon. Finally, we discuss the possible formation and destruction routes in light of the new observations.
-
Abstract We report the detection of the lowest-energy conformer of E -1-cyano-1,3-butadiene ( E -1- C 4 H 5 CN ), a linear isomer of pyridine, using the fourth data reduction of the GBT Observations of TMC-1: Hunting for Aromatic Molecules (GOTHAM) deep spectral survey toward TMC-1 with the 100 m Green Bank Telescope. We perform velocity stacking and matched-filter analyses using Markov chain Monte Carlo simulations and find evidence for the presence of this molecule at the 5.1 σ level. We derive a total column density of 3.8 − 0.9 + 1.0 × 10 10 cm −2 , which is predominantly found toward two of the four velocity components we observe toward TMC-1. We use this molecule as a proxy for constraining the gas-phase abundance of the apolar hydrocarbon 1,3-butadiene. Based on the three-phase astrochemical modeling code NAUTILUS and an expanded chemical network, our model underestimates the abundance of cyano-1,3-butadiene by a factor of 19, with a peak column density of 2.34 × 10 10 cm −2 for 1,3-butadiene. Compared to the modeling results obtained in previous GOTHAM analyses, the abundance of 1,3-butadiene is increased by about two orders of magnitude. Despite this increase, the modeled abundances of aromatic species do not appear to change and remain underestimated by one to four orders of magnitude. Meanwhile, the abundances of the five-membered ring molecules increase proportionally with 1,3-butadiene by two orders of magnitude. We discuss the implications for bottom-up formation routes to aromatic and polycyclic aromatic molecules.more » « less
-
Abstract Using data from the Green Bank Telescope (GBT) Observations of TMC-1: Hunting for Aromatic Molecules (GOTHAM) survey, we report the first astronomical detection of the C 10 H − anion. The astronomical observations also provided the necessary data to refine the spectroscopic parameters of C 10 H − . From the velocity stacked data and the matched filter response, C 10 H − is detected at >9 σ confidence level at a column density of 4.04 − 2.23 + 10.67 × 10 11 cm −2 . A dedicated search for the C 10 H radical was also conducted toward TMC-1. In this case, the stacked molecular emission of C 10 H was detected at a ∼3.2 σ confidence interval at a column density of 2.02 − 0.82 + 2.68 × 10 11 cm −2 . However, as the determined confidence level is currently <5 σ , we consider the identification of C 10 H as tentative. The full GOTHAM data set was also used to better characterize the physical parameters including column density, excitation temperature, line width, and source size for the C 4 H, C 6 H, and C 8 H radicals and their respective anions, and the measured column densities were compared to the predictions from a gas/grain chemical formation model and from a machine learning analysis. Given the measured values, the C 10 H − /C 10 H column density ratio is ∼ 2.0 − 1.6 + 5.9 —the highest value measured between an anion and neutral species to date. Such a high ratio is at odds with current theories for interstellar anion chemistry. For the radical species, both models can reproduce the measured abundances found from the survey; however, the machine learning analysis matches the detected anion abundances much better than the gas/grain chemical model, suggesting that the current understanding of the formation chemistry of molecular anions is still highly uncertain.more » « less
-
Abstract This paper analyses images from 43 to 340 GHz to trace the structure of the Source I (SrcI) disk in Orion-KL with ∼12 au resolution. The data reveal an almost edge-on disk with an outside diameter ∼100 au, which is heated from the inside. The high opacity at 220–340 GHz hides the internal structure and presents a surface temperature ∼500 K. Images at 43, 86 and 99 GHz reveal structure within the disk. At 43 GHz there is bright compact emission with brightness temperature ∼1300 K. Another feature, most prominent at 99 GHz, is a warped ridge of emission. The data can be explained by a simple model with a hot inner structure, seen through cooler material. A wide-angle outflow mapped in SiO emission ablates material from the interior of the disk, and extends in a bipolar outflow over 1000 au along the rotation axis of the disk. SiO v = 0, J = 5–4 emission appears to have a localized footprint in the warped ridge. These observations suggest that the ridge is the working surface of the disk, and heated by accretion and the outflow. The disk structure may be evolving, with multiple accretion and outflow events. We discuss two sources of variability: (1) variable accretion onto the disk as SrcI travels through the filamentary debris from the Becklin–Neugebauer Object-SrcI encounter ∼550 yr ago; and (2) episodic accretion from the disk onto the protostar, which may trigger multiple outflows. The warped inner-disk structure is direct evidence that SrcI could be a binary experiencing episodic accretion.more » « less
-
Abstract We present laboratory rotational spectroscopy of five isomers of cyanoindene (2-, 4-, 5-, 6-, and 7-cyanoindene) using a cavity Fourier transform microwave spectrometer operating between 6 and 40 GHz. Based on these measurements, we report the detection of 2-cyanoindene (1H-indene-2-carbonitrile; 2- C 9 H 7 CN ) in GOTHAM line survey observations of the dark molecular cloud TMC-1 using the Green Bank Telescope at centimeter wavelengths. Using a combination of Markov Chain Monte Carlo, spectral stacking, and matched filtering techniques, we find evidence for the presence of this molecule at the 6.3 σ level. This provides the first direct observation of the ratio of a cyano-substituted polycyclic aromatic hydrocarbon to its pure hydrocarbon counterpart, in this case indene, in the same source. We discuss the possible formation chemistry of this species, including why we have only detected one of the isomers in TMC-1. We then examine the overall hydrocarbon:CN-substituted ratio across this and other simpler species, as well as compare to those ratios predicted by astrochemical models. We conclude that while astrochemical models are not yet sufficiently accurate to reproduce absolute abundances of these species, they do a good job at predicting the ratios of hydrocarbon:CN-substituted species, further solidifying -CN tagged species as excellent proxies for their fully symmetric counterparts.more » « less
-
Abstract We report a systematic study of all known methyl carbon chains toward TMC-1 using the second data release of the GOTHAM survey, as well as a search for larger species. Using Markov Chain Monte Carlo simulations and spectral line stacking of over 30 rotational transitions, we report statistically significant emission from methylcyanotriacetylene (CH 3 C 7 N) at a confidence level of 4.6 σ , and use it to derive a column density of ∼10 11 cm −2 . We also searched for the related species, methyltetraacetylene (CH 3 C 8 H), and place upper limits on the column density of this molecule. By carrying out the above statistical analyses for all other previously detected methyl-terminated carbon chains that have emission lines in our survey, we assess the abundances, excitation conditions, and formation chemistry of methylpolyynes (CH 3 C 2 n H) and methylcyanopolyynes (CH 3 C 2 n -1 N) in TMC-1, and compare those with predictions from a chemical model. Based on our observed trends in column density and relative populations of the A and E nuclear spin isomers, we find that the methylpolyyne and methylcyanopolyyne families exhibit stark differences from one another, pointing to separate interstellar formation pathways, which is confirmed through gas–grain chemical modeling with nautilus .more » « less