skip to main content

Search for: All records

Creators/Authors contains: "McKernan, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Stars are likely embedded in the gas disks of active galactic nuclei (AGN). Theoretical models predict that in the inner regions of the disk, these stars accrete rapidly, with fresh gas replenishing hydrogen in their cores faster than it is burned into helium, effectively stalling their evolution at hydrogen burning. We produce order-of-magnitude estimates of the number of such stars in a fiducial AGN disk. We find numbers of order 10 2–4 , confined to the inner r cap ∼ 3000 r s ∼ 0.03 pc. These stars can profoundly alter the chemistry of AGN disks, enriching them inmore »helium and depleting them in hydrogen, both by order-unity amounts. We further consider mergers between these stars and other disk objects, suggesting that star–star mergers result in rapid mass loss from the remnant to restore an equilibrium mass, while star–compact object mergers may result in exotic outcomes and even host binary black hole mergers within themselves. Finally, we examine how these stars react as the disk dissipates toward the end of its life, and find that they may return mass to the disk fast enough to extend its lifetime by a factor of several and/or may drive powerful outflows from the disk. Post-AGN, these stars rapidly lose mass and form a population of stellar mass black holes around 10 M ⊙ . Due to the complex and uncertain interactions between embedded stars and the disk, their plausible ubiquity, and their order-unity impact on disk structure and evolution, they must be included in realistic disk models.« less
    Free, publicly-accessible full text available April 1, 2023
  2. Free, publicly-accessible full text available October 1, 2022
  3. ABSTRACT Advanced LIGO and Advanced Virgo are detecting a large number of binary stellar origin black hole (BH) mergers. A promising channel for accelerated BH merger lies in active galactic nucleus (AGN) discs of gas around supermasssive BHs. Here, we investigate the relative number of compact object (CO) mergers in AGN disc models, including BH, neutron stars (NS), and white dwarfs, via Monte Carlo simulations. We find the number of all merger types in the bulk disc grows ∝ t1/3 which is driven by the Hill sphere of the more massive merger component. Median mass ratios of NS–BH mergers in AGN discs aremore »$\tilde{q}=0.07\pm 0.06(0.14\pm 0.07)$ for mass functions (MF) M−1(− 2). If a fraction fAGN of the observed rate of BH–BH mergers (RBH–BH) come from AGN, the rate of NS–BH (NS–NS) mergers in the AGN channel is ${R}_{\mathrm{ BH}\!-\!\mathrm{ NS}} \sim f_{\mathrm{ AGN}}[10,300]\, \rm {Gpc}^{-3}\, \rm {yr}^{-1},({\mathit{ R}}_{NS\!-\!NS} \le \mathit{ f}_{AGN}400\, \rm {Gpc}^{-3}\, \rm {yr}^{-1}$). Given the ratio of NS–NS/BH–BH LIGO search volumes, from preliminary O3 results the AGN channel is not the dominant contribution to observed NS–NS mergers. The number of lower mass gap events expected is a strong function of the nuclear MF and mass segregation efficiency. CO merger ratios derived from LIGO can restrict models of MF, mass segregation, and populations embedded in AGN discs. The expected number of electromagnetic (EM) counterparts to NS–BH mergers in AGN discs at z < 1 is $\sim [30,900]\, {\rm {yr}}^{-1}(f_{\mathrm{ AGN}}/0.1)$. EM searches for flaring events in large AGN surveys will complement LIGO constraints on AGN models and the embedded populations that must live in them.« less
  4. ABSTRACT Accretion discs around supermassive black holes are promising sites for stellar mass black hole mergers detectable with LIGO. Here we present the results of Monte Carlo simulations of black hole mergers within 1-d AGN disc models. For the spin distribution in the disc bulk, key findings are: (1) The distribution of χeff is naturally centred around $\tilde{\chi }_{\rm eff} \approx 0.0$, (2) the width of the χeff distribution is narrow for low natal spins. For the mass distribution in the disc bulk, key findings are: (3) mass ratios $\tilde{q} \sim 0.5\!-\!0.7$, (4) the maximum merger mass in the bulkmore »is $\sim 100\!-\!200\, \mathrm{M}_{\odot }$, (5) $\sim 1{{\ \rm per\ cent}}$ of bulk mergers involve BH $\gt 50\, \mathrm{M}_{\odot }$ with (6) $\simeq 80{{\ \rm per\ cent}}$ of bulk mergers are pairs of first generation BH. Additionally, mergers at a migration trap grow an IMBH with typical merger mass ratios $\tilde{q}\sim 0.1$. Ongoing LIGO non-detections of black holes $\gt 10^{2}\, \mathrm{M}_{\odot }$ puts strong limits on the presence of migration traps in AGN discs (and therefore AGN disc density and structure) as well as median AGN disc lifetime. The highest merger rate occurs for this channel if AGN discs are relatively short-lived (≤1 Myr) so multiple AGN episodes can happen per Galactic nucleus in a Hubble time.« less
  5. ABSTRACT We present the results of a multiwavelength follow-up campaign for the luminous nuclear transient Gaia16aax, which was first identified in 2016 January. The transient is spatially consistent with the nucleus of an active galaxy at z = 0.25, hosting a black hole of mass ${\sim }6\times 10^8\, \mathrm{M}_\odot$. The nucleus brightened by more than 1 mag in the Gaia G band over a time-scale of less than 1 yr, before fading back to its pre-outburst state over the following 3 yr. The optical spectra of the source show broad Balmer lines similar to the ones present in a pre-outburst spectrum. Duringmore »the outburst, the H α and H β emission lines develop a secondary peak. We also report on the discovery of two transients with similar light-curve evolution and spectra: Gaia16aka and Gaia16ajq. We consider possible scenarios to explain the observed outbursts. We exclude that the transient event could be caused by a microlensing event, variable dust absorption or a tidal encounter between a neutron star and a stellar mass black hole in the accretion disc. We consider variability in the accretion flow in the inner part of the disc, or a tidal disruption event of a star ${\ge } 1 \, \mathrm{M}_{\odot }$ by a rapidly spinning supermassive black hole as the most plausible scenarios. We note that the similarity between the light curves of the three Gaia transients may be a function of the Gaia alerts selection criteria.« less

    Low ionization nuclear emission-line regions (LINERs) are a heterogeneous collection of up to one-third of galactic nuclei in the local Universe. It is unclear whether LINERs are simply the result of low accretion rates onto supermassive black holes (BHs) or whether they include a large number of optically thick radiatively inefficient but super-Eddington accretion flows (RIAFs). Optically thick RIAFs are typically discs of large-scale height or quasi-spherical gas flows. These should be dense enough to trap and merge a large number of the stellar mass BHs, which we expect to exist in galactic nuclei. Electromagnetic observations of photospheres ofmore »accretion flows do not allow us to break model degeneracies. However, gravitational wave observations probe the interior of accretion flows where the merger of stellar mass BHs can be greatly accelerated over the field rate. Here, we show that the upper limits on the rate of BH mergers observed with LIGO demonstrate that most LINERs cannot be optically thick RIAFs.

    « less