skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McLaughlin, Richard M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The vertical transport of solid material in a stratified medium is fundamental to a number of environmental applications, with implications for the carbon cycle and nutrient transport in marine ecosystems. In this work, we study the diffusion-limited settling of highly porous particles in a density-stratified fluid through a combination of experiment, analysis, and numerical simulation. By delineating and appealing to the diffusion-limited regime wherein buoyancy effects due to mass adaptation dominate hydrodynamic drag, we derive a simple expression for the steady settling velocity of a sphere as a function of the density, size, and diffusivity of the solid, as well as the density gradient of the background fluid. In this regime, smaller particles settle faster, in contrast with most conventional hydrodynamic drag mechanisms. Furthermore, we outline a general mathematical framework for computing the steady settling speed of a body of arbitrary shape in this regime and compute exact results for the case of general ellipsoids. Using hydrogels as a highly porous model system, we validate the predictions with laboratory experiments in linear stratification for a wide range of parameters. Last, we show how the predictions can be applied to arbitrary slowly varying background density profiles and demonstrate how a measured particle position over time can be used to reconstruct the background density profile. 
    more » « less
    Free, publicly-accessible full text available June 24, 2026
  2. Abstract We present two accurate and efficient algorithms for solving the incompressible, irrotational Euler equations with a free surface in two dimensions with background flow over a periodic, multiply connected fluid domain that includes stationary obstacles and variable bottom topography. One approach is formulated in terms of the surface velocity potential while the other evolves the vortex sheet strength. Both methods employ layer potentials in the form of periodized Cauchy integrals to compute the normal velocity of the free surface, are compatible with arbitrary parameterizations of the free surface and boundaries, and allow for circulation around each obstacle, which leads to multiple-valued velocity potentials but single-valued stream functions. We prove that the resulting second-kind Fredholm integral equations are invertible, possibly after a physically motivated finite-rank correction. In an angle-arclength setting, we show how to avoid curve reconstruction errors that are incompatible with spatial periodicity. We use the proposed methods to study gravity-capillary waves generated by flow around several elliptical obstacles above a flat or variable bottom boundary. In each case, the free surface eventually self-intersects in a splash singularity or collides with a boundary. We also show how to evaluate the velocity and pressure with spectral accuracy throughout the fluid, including near the free surface and solid boundaries. To assess the accuracy of the time evolution, we monitor energy conservation and the decay of Fourier modes and compare the numerical results of the two methods to each other. We implement several solvers for the discretized linear systems and compare their performance. The fastest approach employs a graphics processing unit (GPU) to construct the matrices and carry out iterations of the generalized minimal residual method (GMRES). 
    more » « less
  3. Abstract An extremely broad and important class of phenomena in nature involves the settling and aggregation of matter under gravitation in fluid systems. Here, we observe and model mathematically an unexpected fundamental mechanism by which particles suspended within stratification may self-assemble and form large aggregates without adhesion. This phenomenon arises through a complex interplay involving solute diffusion, impermeable boundaries, and aggregate geometry, which produces toroidal flows. We show that these flows yield attractive horizontal forces between particles at the same heights. We observe that many particles demonstrate a collective motion revealing a system which appears to solve jigsaw-like puzzles on its way to organizing into a large-scale disc-like shape, with the effective force increasing as the collective disc radius grows. Control experiments isolate the individual dynamics, which are quantitatively predicted by simulations. Numerical force calculations with two spheres are used to build many-body simulations which capture observed features of self-assembly. 
    more » « less