skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McNicholas, Brendon J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnetic circular dichroism (MCD) and UV-Vis-NIR spectroscopy were used to investigate the spectroscopic signatures of the triplet-multiplet and other transitions observed in the simplest [Formula: see text] (PctBuCu and Pc(SO3Na)4Cu) and [Formula: see text] (PctBuV=O and TPz(OAr)8V=O) phthalocyanine systems. Density Functional Theory (DFT) and time-dependent DFT (TDDFT) calculations allowed accurate correlation between the experimental and theoretical data. In particular, similarities between vibronic profiles in Q-band and triplet-multiplet band regions as well as the presence of MCD [Formula: see text]-terms associated with the 0-0 transitions support the relationship between the Q- and triplet-multiplet transitions. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. The electronic structures, charge-transfer, and triplet–multiplet transitions in cobalt(i), cobalt(ii), and cobalt(iii) phthalocyanines were investigated in detail by UV-vis-NIR, MCD, DFT, and TDDFT methods. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. We report the synthesis and characterization of homoleptic borane adducts of hexacyanoferrate( ii ). Borane coordination blueshifts d–d transitions and CN IR and Raman frequencies. Control over redox properties is established with respect to borane Lewis acidity, reflected in peak anodic potential shifts per borane of +250 mV for BPh 3 and +350 mV for B(C 6 F 5 ) 3 . Electron transfer from [Fe(CN-B(C 6 F 5 ) 3 ) 6 ] 4− to photogenerated [Ru(2,2′-bipyridine) 3 ] 3+ is very rapid, consistent with voltammetry data. Coordination by Lewis acids provides an avenue for selective modification of the electronic structures and electrochemical properties of cyanometalates. 
    more » « less