skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying charge-transfer and trip–multiplet states in Co( i ), Co( ii ), and Co( iii ) phthalocyanines using (magneto)optical spectroscopy and (TD)DFT calculations
The electronic structures, charge-transfer, and triplet–multiplet transitions in cobalt(i), cobalt(ii), and cobalt(iii) phthalocyanines were investigated in detail by UV-vis-NIR, MCD, DFT, and TDDFT methods.  more » « less
Award ID(s):
2153081
PAR ID:
10592812
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Dalton Transactions
ISSN:
1477-9226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Warren Piers (Ed.)
    Although cobalt( i ) bis-phosphine complexes have been implicated in many selective C–C bond-forming reactions, until recently relatively few of these compounds have been fully characterized or have been shown to be intermediates in catalytic reactions. In this paper we present a new practical method for the synthesis and isolation of several cobalt( i )-bis-phosphine complexes and their use in Co( i )-catalyzed reactions. We find that easily prepared ( in situ generated or isolated) bis-phosphine and (2,6- N -aryliminoethyl)pyridine (PDI) cobalt( ii ) halide complexes are readily reduced by 1,4-bis-trimethylsilyl-1,4-dihydropyrazine or commercially available lithium nitride (Li 3 N), leaving behind only innocuous volatile byproducts. Depending on the structures of the bis-phosphines, the cobalt( i ) complex crystallizes as a phosphine-bridged species [(P∼P)(X)Co I [μ-(P∼P)]Co I (X)(P∼P)] or a halide-bridged species [(P∼P)Co I [μ-(X)] 2 Co I (P∼P)]. Because the side-products are innocuous, these methods can be used for the in situ generation of catalytically competent Co( i ) complexes for a variety of low-valent cobalt-catalyzed reactions of even sensitive substrates. These complexes are also useful for the synthesis of rare cationic [(P∼P)Co I -η 4 -diene] + X − or [(P∼P)Co I -η 6 -arene] + X − complexes, which are shown to be excellent single-component catalysts for the following regioselective reactions of dienes: heterodimerizations with ethylene or methyl acrylate, hydroacylation and hydroboration. The reactivity of the single-component catalysts with the in situ generated species are also documented. 
    more » « less
  2. Abstract A novel surface modification approach is taken to cyanide‐sensing by using functionalized cellulose surface that is chemically modified by immobilizing cobalt(II)‐bis‐terpyridine complex on it. The cobalt(II)‐bis‐tpy complex can exhibit selective “naked eye” colorimetric detection of micromolar level cyanide in aqueous solution, where the visible red‐orange color of cobalt(II)‐bis‐tpy complex solution (aqueous) disappears in the presence of cyanide ions. In order to make the sensor more proficient and easy to use, these cobalt(II)‐bis‐tpy molecules are chemically grafted on the surface of microcrystalline cellulose and cellulose paper, which turns the color of functionalized cellulose orange‐red. Both of these colored cellulose powder and paper exhibit color loss in 10−6maqueous solution of potassium cyanide. This functionalized hybrid inorganic–organic paper offers an easy “dip and detect” cyanide sensing. 
    more » « less
  3. Monoprotonated homoleptic complex of cobalt(ii) with 4′-pyridyl-2,2′;6′,2′′-terpyridine ligand is an efficient precatalyst for hydroboration of styrene derivatives with Markovnikov selectivity, displaying turnover frequencies up to 47 000 h−1
    more » « less
  4. Zero-field splitting of a highly symmetric Co(ii) complex with single-molecule magnet properties has been probed by far-IR magneto-spectroscopy (FIRMS), high-field electron paramagnetic resonance (HFEPR), and inelastic neutron scattering (INS). 
    more » « less
  5. Two seven-coordinate mononuclear Co(ii) complexes are proved to have field-induced magnetic relaxation and one of them possesses capped octahedral geometry. 
    more » « less