Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Abstract Science Research on Commercial Ships (Science RoCS) is a grassroots multi-institution group of scientists, engineers, data managers, and administrators seeking to further research opportunities by equipping commercial vessels with suites of maritime appropriate scientific sensors operated autonomously on regular ship routes with minimal crew intervention. Science RoCS aims to foster cooperation between the shipping industry and scientific community at a level that will be transformative for societally relevant ocean science, promote cross-disciplinary ocean science through simultaneous observation of the air/sea interface and water column, and spur a technological revolution in observational oceanography by developing new turnkey, maritime-industry-appropriate scientific equipment whose data streams can be used to stimulate innovations in oceanic (physical, chemical, and biological) understanding and forecasting. We envision a future where scientific data collection on commercial ships is the new industry standard, providing repeat measurements in undersampled, remote regions, on scales not otherwise accessible to the scientific community.more » « less
-
This dataset contains salinity-calibrated Conductivity Temperature Depth (CTD) and bottle data from the 2021 Ocean Observatories Initiative (OOI) Irminger Sea 8 cruise of the research vessel Neil Armstrong (AR60-01). Data quality control methods have been used to assess performance of the CTD instrument. Resulting high-quality profiles were then used together with salinity bottle data analyzed at sea to create a post-cruise salinity-calibrated CTD product. This submission has been produced as part of an ongoing effort to more fully utilize CTD data collected by OOI Irminger cruises, which have been taking place annually since 2014. The hydrographic data collection facilitated by OOI in the Irminger Sea currently supports science for not only OOI end users, but also international oceanographic research projects, including the Overturning in the Subpolar North Atlantic Program (https://www.o-snap.org/), Atlantic Meridional Overturning Circulation Program (https://usclivar.org/amoc) and BioGeoChemical Array for Real-time Geostrophic Oceanography program (https://biogeochemical-argo.org). Such programs require a higher-level data product than what OOI provides through its standard data dissemination, and hence a quality controlled, salinity-calibrated data product has been produced. Data are in text format, data description is in PDF.more » « less
-
This submission contains salinity-calibrated Conductivity Temperature Depth (CTD) data from the 2018 Ocean Observations Initiative (OOI) Irminger Sea 5 cruise (AR30-03). Data quality control methods have been used to assess performance of the CTD instrument. Resulting high-quality profiles were then used together with salinity bottle data analyzed at sea to create a post-cruise salinity-calibrated CTD product. This submission has been produced as part of an ongoing effort to more fully utilize CTD data collected by OOI Irminger cruises, which have been taking place annually since 2014. The hydrographic data collection facilitated by OOI in the Irminger Sea currently supports science for not only OOI end users, but also international oceanographic research projects, including the Overturning in the Subpolar North Atlantic Program (https://www.o-snap.org/), Atlantic Meridional Overturning Circulation Program (https://usclivar.org/amoc) and BioGeoChemical Array for Real-time Geostrophic Oceanography program (https://biogeochemical- argo.org/index.php). Such programs require a higher-level data product than what OOI provides through its standard data dissemination, and hence a quality controlled, salinity-calibrated data product has been produced. Data are in text formats.more » « less
-
This submission contains salinity-calibrated Conductivity Temperature Depth (CTD) data from the 2019 Ocean Observations Initiative (OOI) Irminger Sea 6 cruise (AR35-05). Data quality control methods have been used to assess performance of the CTD instrument. Resulting high-quality profiles were then used together with salinity bottle data analyzed at sea to create a post-cruise salinity-calibrated CTD product. This submission has been produced as part of an ongoing effort to more fully utilize CTD data collected by OOI Irminger cruises, which have been taking place annually since 2014. The hydrographic data collection facilitated by OOI in the Irminger Sea currently supports science for not only OOI end users, but also international oceanographic research projects, including the Overturning in the Subpolar North Atlantic Program (https://www.o-snap.org/), Atlantic Meridional Overturning Circulation Program (https://usclivar.org/amoc) and BioGeoChemical Array for Real-time Geostrophic Oceanography program (https://biogeochemical- argo.org/index.php). Such programs require a higher-level data product than what OOI provides through its standard data dissemination, and hence a quality controlled, salinity-calibrated data product has been produced. Data are in text formats.more » « less
-
This dataset contains salinity-calibrated Conductivity Temperature Depth (CTD) data from the 2020 Ocean Observations Initiative (OOI) Irminger Sea 7 and Overturning in the Subpolar North Atlantic Program – Greenland Deep Western Boundary Current (ONSAP GDWBC) cruise (AR46). Data quality control methods have been used to assess performance of the CTD instrument. Resulting high-quality profiles were then used together with salinity bottle data analyzed at sea to create a post-cruise salinity-calibrated CTD product. This dataset has been produced as part of an ongoing effort to more fully utilize CTD data collected by OOI Irminger cruises, which have been taking place annually since 2014. The hydrographic data collection facilitated by OOI in the Irminger Sea currently supports science for not only OOI end users, but also international oceanographic research projects, including the Overturning in the Subpolar North Atlantic Program (https://www.o-snap.org/), Atlantic Meridional Overturning Circulation Program (https://usclivar.org/amoc) and BioGeoChemical Array for Real-time Geostrophic Oceanography program (https://biogeochemical-argo.org/index.php). Such programs require a higher-level data product than what OOI provides through its standard data dissemination, and hence a quality controlled, salinity-calibrated data product has been produced. Data are in text formats.more » « less
-
Abstract Upper-ocean turbulence is central to the exchanges of heat, momentum, and gasses across the air/sea interface, and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed-layer depths and sea surface temperature. In part, progress has been limited due to the difficulty of measuring turbulence from fixed moorings which can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring Turbulent Kinetic Energy (TKE) dissipation rates, ϵ , from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-ocean Regional Study (SPURS) to collect two year-long data sets. We find the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate two-week missions for (10 −8 ) ≤ ϵ ≤ (10 −5 ) m 2 s −3 . Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1-10 km. We also find that dissipation estimates from two different moorings at 12.5 m, and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory.more » « less
-
Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella , a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.more » « less
An official website of the United States government
