Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Chronograms—phylogenies with branch lengths proportional to time—represent key data on timing of evolutionary events, allowing us to study natural processes in many areas of biological research. Chronograms also provide valuable information that can be used for education, science communication, and conservation policy decisions. Yet, achieving a high-quality reconstruction of a chronogram is a difficult and resource-consuming task. Here we present DateLife, a phylogenetic software implemented as an R package and an R Shiny web application available at www.datelife.org, that provides services for efficient and easy discovery, summary, reuse, and reanalysis of node age data mined from a curated database of expert, peer-reviewed, and openly available chronograms. The main DateLife workflow starts with one or more scientific taxon names provided by a user. Names are processed and standardized to a unified taxonomy, allowing DateLife to run a name match across its local chronogram database that is curated from Open Tree of Life’s phylogenetic repository, and extract all chronograms that contain at least two queried taxon names, along with their metadata. Finally, node ages from matching chronograms are mapped using the congruification algorithm to corresponding nodes on a tree topology, either extracted from Open Tree of Life’s synthetic phylogeny or one provided by the user. Congruified node ages are used as secondary calibrations to date the chosen topology, with or without initial branch lengths, using different phylogenetic dating methods such as BLADJ, treePL, PATHd8, and MrBayes. We performed a cross-validation test to compare node ages resulting from a DateLife analysis (i.e, phylogenetic dating using secondary calibrations) to those from the original chronograms (i.e, obtained with primary calibrations), and found that DateLife’s node age estimates are consistent with the age estimates from the original chronograms, with the largest variation in ages occurring around topologically deeper nodes. Because the results from any software for scientific analysis can only be as good as the data used as input, we highlight the importance of considering the results of a DateLife analysis in the context of the input chronograms. DateLife can help to increase awareness of the existing disparities among alternative hypotheses of dates for the same diversification events, and to support exploration of the effect of alternative chronogram hypotheses on downstream analyses, providing a framework for a more informed interpretation of evolutionary results.more » « less
-
Abstract Ecosystems globally are under threat from ongoing anthropogenic environmental change. Effective conservation management requires more thorough biodiversity surveys that can reveal system‐level patterns and that can be applied rapidly across space and time. Using modern ecological models and community science, we integrate environmental DNA and Earth observations to produce a time snapshot of regional biodiversity patterns and provide multi‐scalar community‐level characterization. We collected 278 samples in spring 2017 from coastal, shrub, and lowland forest sites in California, a complex ecosystem and biodiversity hotspot. We recovered 16,118 taxonomic entries from eDNA analyses and compiled associated traditional observations and environmental data to assess how well they predicted alpha, beta, and zeta diversity. We found that local habitat classification was diagnostic of community composition and distinct communities and organisms in different kingdoms are predicted by different environmental variables. Nonetheless, gradient forest models of 915 families recovered by eDNA analysis and using BIOCLIM variables, Sentinel‐2 satellite data, human impact, and topographical features as predictors, explained 35% of the variance in community turnover. Elevation, sand percentage, and photosynthetic activities (NDVI32) were the top predictors. In addition to this signal of environmental filtering, we found a positive relationship between environmentally predicted families and their numbers of biotic interactions, suggesting environmental change could have a disproportionate effect on community networks. Together, these analyses show that coupling eDNA with environmental predictors including remote sensing data has capacity to test proposed Essential Biodiversity Variables and create new landscape biodiversity baselines that span the tree of life.more » « less
An official website of the United States government
