- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Md Ashik Ahmed*, Md Redowan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study evaluated the performance of sequencing batch reactors (SBR) in the fate and transport of dissolved organic nitrogen (DON) using a blend of wastewater and landfill leachate. Most nitrogen removal methods concentrate on inorganic nitrogen, whereas some biological processes add DON to the effluent. Two reactors were introduced with wastewater and landfill leachate of high and low organic carbon and compared them to a reactor without leachate. DON transformation, characterization, and microbial community dispersion were examined to understand the effects of leachate-induced effluent DON on the biological nitrogen removal process. The ammonium removal efficiencies were found 96, 97, and 98%; COD removal efficiencies were 75, 59, and 63%; and total nitrogen (TN) removal efficiencies were 83, 86, and 88%, for R1, R2, and R3, respectively. The effluent nitrate concentrations were found 1.67 ± 0.89 (R1), 3.05 ± 2.08 (R2), and 1.31 ± 1.30 (R3) mg/L and DON went down from 9.67 ± 2.5 to 6.02 ± 2.8 mg/L (R1), 9.29 ± 3.4 to 7.49 ± 3.6 mg/L (R2), and 3.59 ± 1.6 to 2.08 ± 1.1 mg/L (R3). Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and excitation-emission matrices (EEMs) with parallel factor (PARAFAC) analysis were used to characterize DON. Microbial community analysis was also conducted. Leachate-induced DON discharge's environmental effects were assessed using in-situ aquatic ecosystem algal bioassay. SBR system removed most inorganic nitrogen species and a small amount of leachate-induced DON. The study emphasizes the need for independent investigations to assess their effects on receiving water bodies.more » « less
An official website of the United States government

Full Text Available