skip to main content

Search for: All records

Creators/Authors contains: "Medeiros, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Community Earth System Model, version 2 (CESM2), has a very high climate sensitivity driven by strong positive cloud feedbacks. To evaluate the simulated clouds in the present climate and characterize their response with climate warming, a clustering approach is applied to three independent satellite cloud products and a set of coupled climate simulations. Usingk-means clustering with a Wasserstein distance cost function, a set of typical cloud configurations is derived for the satellite cloud products. Using satellite simulator output, the model clouds are classified into the observed cloud regimes in both current and future climates. The model qualitatively reproduces the observed cloud configurations in the historical simulation using the same time period as the satellite observations, but it struggles to capture the observed heterogeneity of clouds which leads to an overestimation of the frequency of a few preferred cloud regimes. This problem is especially apparent for boundary layer clouds. Those low-level cloud regimes also account for much of the climate response in the late twenty-first century in four shared socioeconomic pathway simulations. The model reduces the frequency of occurrence of these low-cloud regimes, especially in tropical regions under large-scale subsidence, in favor of regimes that have weaker cloud radiative effects.

    more » « less
  2. Abstract

    The sensitivity of cloud feedbacks to atmospheric model parameters is evaluated using a CAM6 perturbed parameter ensemble (PPE). The CAM6 PPE perturbs 45 parameters across 262 simulations, 206 of which are used here. The spread in the total cloud feedback and its six components across the CAM6 PPE are comparable to the spread across the CMIP6 and AMIP ensembles, indicating that parametric uncertainty mirrors structural uncertainty. However, the high-cloud altitude feedback is generally larger in the CAM6 PPE than WCRP assessment, CMIP6, and AMIP values. We evaluate the influence of each of the 45 parameters on the total cloud feedback and each of the six cloud feedback components. We also explore whether the CAM6 PPE can be used to constrain the total cloud feedback, with inconclusive results. Further, we find that despite the large parametric sensitivity of cloud feedbacks in CAM6, a substantial increase in cloud feedbacks from CAM5 to CAM6 is not a result of changes in parameter values. Notably, the CAM6 PPE is run with a more recent version of CAM6 (CAM6.3) than was used for AMIP (CAM6.0) and has a smaller total cloud feedback (0.56 W m−2K−1) as compared to CAM6.0 (0.81 W m−2K−1) owing primarily to reductions in low clouds over the tropics and midlatitudes. The work highlights the large sensitivity of cloud feedbacks to both parameter values and structural details in CAM6.

    more » « less
  3. Abstract

    Clouds are parameterized in climate models using quantities on the model grid‐scale to approximate the cloud cover and impact on radiation. Because of the complexity of processes involved with clouds, these parameterizations are one of the key challenges in climate modeling. Differences in parameterizations of clouds are among the main contributors to the spread in climate sensitivity across models. In this work, the clouds in three generations of an atmosphere model lineage are evaluated against satellite observations. Satellite simulators are used within the model to provide an appropriate comparison with individual satellite products. In some respects, especially the top‐of‐atmosphere cloud radiative effect, the models show generational improvements. The most recent generation, represented by two distinct branches of development, exhibits some regional regressions in the cloud representation; in particular the southern ocean shows a positive bias in cloud cover. The two branches of model development show how choices during model development, both structural and parametric, lead to different cloud climatologies. Several evaluation strategies are used to quantify the spatial errors in terms of the large‐scale circulation and the cloud structure. The Earth mover's distance is proposed as a useful error metric for the passive satellite data products that provide cloud‐top pressure‐optical depth histograms. The cloud errors identified here may contribute to the high climate sensitivity in the Community Earth System Model, version 2 and in the Energy Exascale Earth System Model, version 1.

    more » « less
  4. null (Ed.)
  5. Abstract

    Although societally important, extreme precipitation is difficult to represent in climate models. This study shows one robust aspect of extreme precipitation across models: extreme precipitation over tropical oceans is strengthened through a positive feedback with cloud-radiative effects. This connection is shown for a multi-model ensemble with experiments that make clouds transparent to longwave radiation. In all cases, tropical extreme precipitation reduces without cloud-radiative effects. Qualitatively similar results are presented for one model using the cloud-locking method to remove cloud feedbacks. The reduced extreme precipitation without cloud-radiative feedbacks does not arise from changes in the mean climate. Rather, evidence is presented that cloud-radiative feedbacks enhance organization of convection and most extreme precipitation over tropical oceans occurs within organized systems. This result suggests that climate models must correctly predict cloud structure and properties, as well as capture the essence of organized convection in order to accurately represent extreme rainfall.

    more » « less
  6. Abstract

    This study investigates the effects of resolved deep convection on tropical rainfall and its multi‐scale variability. A series of aquaplanet simulations are analyzed using the Model for Prediction Across Scales‐Atmosphere with horizontal cell spacings from 120 to 3 km. The 3‐km experiment uses a novel configuration with 3‐km cell spacing between 20°S and 20°N and 15‐km cell spacing poleward of 30°N/S. A comparison of those experiments shows that resolved deep convection yields a narrower, stronger, and more equatorward intertropical convergence zone, which is supported by stronger nonlinear horizontal momentum advection in the boundary layer. There is also twice as much tropical rainfall variance in the experiment with resolved deep convection than in the experiments with parameterized convection. All experiments show comparable precipitation variance associated with Kelvin waves; however, the experiment with resolved deep convection shows higher precipitation variance associated with westward propagating systems. Resolved deep convection also yields at least two orders of magnitude more frequent heavy rainfall rates (>2 mm hr−1) than the experiments with parameterized convection. A comparison of organized precipitation systems demonstrates that tropical convection organizes into linear systems that are associated with stronger and deeper cold pools and upgradient convective momentum fluxes when convection is resolved. In contrast, parameterized convection results in more circular systems, weaker cold pools, and downgradient convective momentum fluxes. These results suggest that simulations with parameterized convection are missing an important feedback loop between the mean state, convective organization, and meridional gradients of moisture and momentum.

    more » « less
  7. Abstract

    It is predicted by both theory and models that high‐altitude clouds will occur higher in the atmosphere as a result of climate warming. This produces a positive longwave feedback and has a substantial impact on the Earth's response to warming. This effect is well established by theory, but is poorly constrained by observations, and there is large spread in the feedback strength between climate models. We use the NASA Multi‐angle Imaging SpectroRadiometer (MISR) to examine changes in Cloud‐Top‐Height (CTH). MISR uses a stereo‐imaging technique to determine CTH. This approach is geometric in nature and insensitive to instrument calibration and therefore is well suited for trend analysis and studies of variability on long time scales. In this article we show that the current MISR record does have an increase in CTH for high‐altitude cloud over Southern Hemisphere (SH) oceans but not over Tropical or the Northern Hemisphere (NH) oceans. We use climate model simulations to estimate when MISR might be expected to detect trends in CTH, that include the NH. The analysis suggests that according to the models used in this study MISR should detect changes over the SH ocean earlier than the NH, and if the model predictions are correct should be capable of detecting a trend over the Tropics and NH very soon (3–10 years). This result highlights the potential value of a follow‐on mission to MISR, which no longer maintains a fixed equator crossing time and is unlikely to be making observations for another 10 years.

    more » « less