skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Medeiros, Henry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Convolutional neural networks trained using manually generated labels are commonly used for semantic or instance segmentation. In precision agriculture, automated flower detection methods use supervised models and post-processing techniques that may not perform consistently as the appearance of the flowers and the data acquisition conditions vary. We propose a self-supervised learning strategy to enhance the sensitivity of segmentation models to different flower species using automatically generated pseudo-labels. We employ a data augmentation and refinement approach to improve the accuracy of the model predictions. The augmented semantic predictions are then converted to panoptic pseudo-labels to iteratively train a multi-task model. The self-supervised model predictions can be refined with existing post-processing approaches to further improve their accuracy. An evaluation on a multi-species fruit tree flower dataset demonstrates that our method outperforms state-of-the-art models without computationally expensive post-processing steps, providing a new baseline for flower detection applications. 
    more » « less
  2. null ; null ; null ; null ; null ; null ; null ; null (Ed.)
    Effective assisted living environments must be able to perform inferences on how their occupants interact with their environment. Gaze direction provides strong indications of how people interact with their surroundings. In this paper, we propose a gaze tracking method that uses a neural network regressor to estimate gazes from keypoints and integrates them over time using a moving average mechanism. Our gaze regression model uses confidence gated units to handle cases of keypoint occlusion and estimate its own prediction uncertainty. Our temporal approach for gaze tracking incorporates these prediction uncertainties as weights in the moving average scheme. Experimental results on a dataset collected in an assisted living facility demonstrate that our gaze regression network performs on par with a complex, dataset-specific baseline, while its uncertainty predictions are highly correlated with the actual angular error of corresponding estimations. Finally, experiments on videos sequences show that our temporal approach generates more accurate and stable gaze predictions. 
    more » « less