skip to main content


Title: Self-Supervised Learning for Panoptic Segmentation of Multiple Fruit Flower Species
Convolutional neural networks trained using manually generated labels are commonly used for semantic or instance segmentation. In precision agriculture, automated flower detection methods use supervised models and post-processing techniques that may not perform consistently as the appearance of the flowers and the data acquisition conditions vary. We propose a self-supervised learning strategy to enhance the sensitivity of segmentation models to different flower species using automatically generated pseudo-labels. We employ a data augmentation and refinement approach to improve the accuracy of the model predictions. The augmented semantic predictions are then converted to panoptic pseudo-labels to iteratively train a multi-task model. The self-supervised model predictions can be refined with existing post-processing approaches to further improve their accuracy. An evaluation on a multi-species fruit tree flower dataset demonstrates that our method outperforms state-of-the-art models without computationally expensive post-processing steps, providing a new baseline for flower detection applications.  more » « less
Award ID(s):
2224591
NSF-PAR ID:
10466990
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
7
Issue:
4
ISSN:
2377-3774
Page Range / eLocation ID:
12387 to 12394
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Advances in visual perceptual tasks have been mainly driven by the amount, and types, of annotations of large-scale datasets. Researchers have focused on fully-supervised settings to train models using offline epoch-based schemes. Despite the evident advancements, limitations and cost of manually annotated datasets have hindered further development for event perceptual tasks, such as detection and localization of objects and events in videos. The problem is more apparent in zoological applications due to the scarcity of annotations and length of videos-most videos are at most ten minutes long. Inspired by cognitive theories, we present a self-supervised perceptual prediction framework to tackle the problem of temporal event segmentation by building a stable representation of event-related objects. The approach is simple but effective. We rely on LSTM predictions of high-level features computed by a standard deep learning backbone. For spatial segmentation, the stable representation of the object is used by an attention mechanism to filter the input features before the prediction step. The self-learned attention maps effectively localize the object as a side effect of perceptual prediction. We demonstrate our approach on long videos from continuous wildlife video monitoring, spanning multiple days at 25 FPS. We aim to facilitate automated ethogramming by detecting and localizing events without the need for labels. Our approach is trained in an online manner on streaming input and requires only a single pass through the video, with no separate training set. Given the lack of long and realistic (includes real-world challenges) datasets, we introduce a new wildlife video dataset–nest monitoring of the Kagu (a flightless bird from New Caledonia)–to benchmark our approach. Our dataset features a video from 10 days (over 23 million frames) of continuous monitoring of the Kagu in its natural habitat. We annotate every frame with bounding boxes and event labels. Additionally, each frame is annotated with time-of-day and illumination conditions. We will make the dataset, which is the first of its kind, and the code available to the research community. We find that the approach significantly outperforms other self-supervised, traditional (e.g., Optical Flow, Background Subtraction) and NN-based (e.g., PA-DPC, DINO, iBOT), baselines and performs on par with supervised boundary detection approaches (i.e., PC). At a recall rate of 80%, our best performing model detects one false positive activity every 50 min of training. On average, we at least double the performance of self-supervised approaches for spatial segmentation. Additionally, we show that our approach is robust to various environmental conditions (e.g., moving shadows). We also benchmark the framework on other datasets (i.e., Kinetics-GEBD, TAPOS) from different domains to demonstrate its generalizability. The data and code are available on our project page:https://aix.eng.usf.edu/research_automated_ethogramming.html

     
    more » « less
  2. Abstract

    Objective.Recent advances in neural decoding have accelerated the development of brain–computer interfaces aimed at assisting users with everyday tasks such as speaking, walking, and manipulating objects. However, current approaches for training neural decoders commonly require large quantities of labeled data, which can be laborious or infeasible to obtain in real-world settings. Alternatively, self-supervised models that share self-generated pseudo-labels between two data streams have shown exceptional performance on unlabeled audio and video data, but it remains unclear how well they extend to neural decoding.Approach.We learn neural decoders without labels by leveraging multiple simultaneously recorded data streams, including neural, kinematic, and physiological signals. Specifically, we apply cross-modal, self-supervised deep clustering to train decoders that can classify movements from brain recordings. After training, we then isolate the decoders for each input data stream and compare the accuracy of decoders trained using cross-modal deep clustering against supervised and unimodal, self-supervised models.Main results.We find that sharing pseudo-labels between two data streams during training substantially increases decoding performance compared to unimodal, self-supervised models, with accuracies approaching those of supervised decoders trained on labeled data. Next, we extend cross-modal decoder training to three or more modalities, achieving state-of-the-art neural decoding accuracy that matches or slightly exceeds the performance of supervised models.Significance.We demonstrate that cross-modal, self-supervised decoding can be applied to train neural decoders when few or no labels are available and extend the cross-modal framework to share information among three or more data streams, further improving self-supervised training.

     
    more » « less
  3. Pack-ice seals are key indicator species in the Southern Ocean. Their large size (2–4 m) and continent-wide distribution make them ideal candidates for monitoring programs via very-high-resolution satellite imagery. The sheer volume of imagery required, however, hampers our ability to rely on manual annotation alone. Here, we present SealNet 2.0, a fully automated approach to seal detection that couples a sea ice segmentation model to find potential seal habitats with an ensemble of semantic segmentation convolutional neural network models for seal detection. Our best ensemble attains 0.806 precision and 0.640 recall on an out-of-sample test dataset, surpassing two trained human observers. Built upon the original SealNet, it outperforms its predecessor by using annotation datasets focused on sea ice only, a comprehensive hyperparameter study leveraging substantial high-performance computing resources, and post-processing through regression head outputs and segmentation head logits at predicted seal locations. Even with a simplified version of our ensemble model, using AI predictions as a guide dramatically boosted the precision and recall of two human experts, showing potential as a training device for novice seal annotators. Like human observers, the performance of our automated approach deteriorates with terrain ruggedness, highlighting the need for statistical treatment to draw global population estimates from AI output. 
    more » « less
  4. We address the challenge of getting efficient yet accurate recognition systems with limited labels. While recognition models improve with model size and amount of data, many specialized applications of computer vision have severe resource constraints both during training and inference. Transfer learning is an effective solution for training with few labels, however often at the expense of a compu- tationally costly fine-tuning of large base models. We propose to mitigate this unpleasant trade-off between compute and accuracy via semi-supervised cross- domain distillation from a set of diverse source models. Initially, we show how to use task similarity metrics to select a single suitable source model to distill from, and that a good selection process is imperative for good downstream performance of a target model. We dub this approach DISTILLNEAREST. Though effective, DISTILLNEAREST assumes a single source model matches the target task, which is not always the case. To alleviate this, we propose a weighted multi-source distilla- tion method to distill multiple source models trained on different domains weighted by their relevance for the target task into a single efficient model (named DISTILL- WEIGHTED). Our methods need no access to source data, and merely need features and pseudo-labels of the source models. When the goal is accurate recognition under computational constraints, both DISTILLNEAREST and DISTILLWEIGHTED approaches outperform both transfer learning from strong ImageNet initializations as well as state-of-the-art semi-supervised techniques such as FixMatch. Averaged over 8 diverse target tasks our multi-source method outperforms the baselines by 5.6%-points and 4.5%-points, respectively. 
    more » « less
  5. ABSTRACT Introduction

    Remote military operations require rapid response times for effective relief and critical care. Yet, the military theater is under austere conditions, so communication links are unreliable and subject to physical and virtual attacks and degradation at unpredictable times. Immediate medical care at these austere locations requires semi-autonomous teleoperated systems, which enable the completion of medical procedures even under interrupted networks while isolating the medics from the dangers of the battlefield. However, to achieve autonomy for complex surgical and critical care procedures, robots require extensive programming or massive libraries of surgical skill demonstrations to learn effective policies using machine learning algorithms. Although such datasets are achievable for simple tasks, providing a large number of demonstrations for surgical maneuvers is not practical. This article presents a method for learning from demonstration, combining knowledge from demonstrations to eliminate reward shaping in reinforcement learning (RL). In addition to reducing the data required for training, the self-supervised nature of RL, in conjunction with expert knowledge-driven rewards, produces more generalizable policies tolerant to dynamic environment changes. A multimodal representation for interaction enables learning complex contact-rich surgical maneuvers. The effectiveness of the approach is shown using the cricothyroidotomy task, as it is a standard procedure seen in critical care to open the airway. In addition, we also provide a method for segmenting the teleoperator’s demonstration into subtasks and classifying the subtasks using sequence modeling.

    Materials and Methods

    A database of demonstrations for the cricothyroidotomy task was collected, comprising six fundamental maneuvers referred to as surgemes. The dataset was collected by teleoperating a collaborative robotic platform—SuperBaxter, with modified surgical grippers. Then, two learning models are developed for processing the dataset—one for automatic segmentation of the task demonstrations into a sequence of surgemes and the second for classifying each segment into labeled surgemes. Finally, a multimodal off-policy RL with rewards learned from demonstrations was developed to learn the surgeme execution from these demonstrations.

    Results

    The task segmentation model has an accuracy of 98.2%. The surgeme classification model using the proposed interaction features achieved a classification accuracy of 96.25% averaged across all surgemes compared to 87.08% without these features and 85.4% using a support vector machine classifier. Finally, the robot execution achieved a task success rate of 93.5% compared to baselines of behavioral cloning (78.3%) and a twin-delayed deep deterministic policy gradient with shaped rewards (82.6%).

    Conclusions

    Results indicate that the proposed interaction features for the segmentation and classification of surgical tasks improve classification accuracy. The proposed method for learning surgemes from demonstrations exceeds popular methods for skill learning. The effectiveness of the proposed approach demonstrates the potential for future remote telemedicine on battlefields.

     
    more » « less