Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Using genetic code expansion (GCE) to encode bioorthogonal chemistry has emerged as a promising method for protein labeling, both in vitro and within cells. Here, we demonstrate that tetrazine amino acids incorporated into proteins are highly tunable and have extraordinary potential for fast and quantitative bioorthogonal ligations. We describe the synthesis and characterize reaction rates of 29 tetrazine amino acids (20 of which are new) and compare their encoding ability into proteins using evolved Tet ncAA encoding tRNA/RS pairs. For these systems, we characterized on-protein Tet stability, reaction rates, and ligation extents, as the utility of a bioorthogonal labeling group depends on its stability and reactivity when encoded into proteins. By integrating data on encoding efficiency, selectivity, on-protein stability, and in-cell labeling for Tet tRNA/RS pairs, we developed the smallest, fastest, and most stable Tet system to date. This was achieved by introducing fluorine substituents to Tet4, resulting in reaction rates at the 10⁶ M⁻¹s⁻¹ level while minimizing degradation. This study expands the toolbox of bioorthogonal reagents for Tet-sTCO-based, site-specific protein labeling and demonstrates that the Tet-ncAA is a uniquely tunable, highly reactive, and encodable bioorthogonal functional group. These findings provide a foundation to further explore Tet-ncAA encoding and reactivity.more » « lessFree, publicly-accessible full text available May 23, 2026
-
Regulation of ion channel expression on the plasma membrane is a major determinant of neuronal excitability, and identifying the underlying mechanisms of this expression is critical to our understanding of neurons. Here, we present two orthogonal strategies to label extracellular sites of the ion channel TRPV1 that minimally perturb its function. We use the amber codon suppression technique to introduce a non-canonical amino acid (ncAA) with tetrazine click chemistry, compatible with a trans-cyclooctene coupled fluorescent dye. Additionally, by inserting the circularly permutated HaloTag (cpHaloTag) in an extracellular loop of TRPV1, we can incorporate a fluorescent dye of our choosing. Optimization of ncAA insertion sites was accomplished by screening residue positions between the S1 and S2 transmembrane domains with elevated missense variants in the human population. We identified T468 as a rapid labeling site (∼5 min) based on functional and biochemical assays in HEK293T/17 cells. Through adapting linker lengths and backbone placement of cpHaloTag on the extracellular side of TRPV1, we generated a fully functional channel construct, TRPV1exCellHalo, with intact wild-type gating properties. We used TRPV1exCellHalo in a single molecule experiment to track TRPV1 on the cell surface and validate studies that show decreased mobility of the channel upon activation. The application of these extracellular label TRPV1 (exCellTRPV1) constructs to track surface localization of the channel will shed significant light on the mechanisms regulating its expression and provide a general scheme to introduce similar modifications to other cell surface receptors.more » « less
-
Abstract One of the major challenges in evaluating the suitability of potential ∼700 E3 ligases for target protein degradation (TPD) is the lack of binders specific to each E3 ligase. Here we apply genetic code expansion (GCE) to encode a tetrazine-containing non-canonical amino acid (Tet-ncAA) site-specifically into the E3 ligase, which can be conjugated with strained trans-cyclooctene (sTCO) tethered to a neo-substrate protein binder by click chemistry within living cells. The resulting E3 ligase minimally modified and functionalized in an E3-ligand free (ELF) manner, can be evaluated for TPD of the neo-substrate. We demonstrate that CRBN encoded with clickable Tet-ncAA, either in the known immunomodulatory drug (IMiD)-binding pocket or across surface, can be covalently tethered to sTCO-linker-JQ1 and recruit BRD2/4 for CRBN mediated degradation, indicating the high plasticity of CRBN for TPD. The degradation efficiency is dependent on location of the Tet-ncAA encoding on CRBN as well as the length of the linker, showing the capability of this approach to map the surface of E3 ligase for identifying optimal TPD pockets. This ELF-degrader approach has the advantages of not only maintaining the native state of E3 ligase, but also allowing the interrogation of E3 ligases and target protein partners under intracellular conditions and can be applied to any known E3 ligase.more » « lessFree, publicly-accessible full text available December 21, 2025
-
Truncation-Free Genetic Code Expansion with Tetrazine Amino Acids for Quantitative Protein LigationsQuantitative labeling of biomolecules is necessary to advance areas of antibody–drug conjugation, super-resolution microscopy imaging of molecules in live cells, and determination of the stoichiometry of protein complexes. Bio-orthogonal labeling to genetically encodable noncanonical amino acids (ncAAs) offers an elegant solution; however, their suboptimal reactivity and stability hinder the utility of this method. Previously, we showed that encoding stable 1,2,4,5-tetrazine (Tet)-containing ncAAs enables rapid, complete conjugation, yet some expression conditions greatly limited the quantitative reactivity of the Tet-protein. Here, we demonstrate that reduction of on-protein Tet ncAAs impacts their reactivity, while the leading cause of the unreactive protein is near-cognate suppression (NCS) of UAG codons by endogenous aminoacylated tRNAs. To overcome incomplete conjugation due to NCS, we developed a more catalytically efficient tRNA synthetase and developed a series of new machinery plasmids harboring the aminoacyl tRNA synthetase/tRNA pair (aaRS/tRNA pair). These plasmids enable robust production of homogeneously reactive Tet-protein in truncation-free cell lines, eliminating the contamination caused by NCS and protein truncation. Furthermore, these plasmid systems utilize orthogonal synthetic origins, which render these machinery vectors compatible with any common expression system. Through developing these new machinery plasmids, we established that the aaRS/tRNA pair plasmid copy-number greatly affects the yields and quality of the protein produced. We then produced quantitatively reactive soluble Tet-Fabs, demonstrating the utility of this system for rapid, homogeneous conjugations of biomedically relevant proteins.more » « less
-
With the recent explosion in high-resolution protein structures, one of the next frontiers in biology is elucidating the mechanisms by which conformational rearrangements in proteins are regulated to meet the needs of cells under changing conditions. Rigorously measuring protein energetics and dynamics requires the development of new methods that can resolve structural heterogeneity and conformational distributions. We have previously developed steady-state transition metal ion fluorescence resonance energy transfer (tmFRET) approaches using a fluorescent noncanonical amino acid donor (Anap) and transition metal ion acceptor to probe conformational rearrangements in soluble and membrane proteins. Here, we show that the fluorescent noncanonical amino acid Acd has superior photophysical properties that extend its utility as a donor for tmFRET. Using maltose-binding protein (MBP) expressed in mammalian cells as a model system, we show that Acd is comparable to Anap in steady-state tmFRET experiments and that its long, single-exponential lifetime is better suited for probing conformational distributions using time-resolved FRET. These experiments reveal differences in heterogeneity in the apo and holo conformational states of MBP and produce accurate quantification of the distributions among apo and holo conformational states at subsaturating maltose concentrations. Our new approach using Acd for time-resolved tmFRET sets the stage for measuring the energetics of conformational rearrangements in soluble and membrane proteins in near-native conditions.more » « less
An official website of the United States government

Full Text Available