- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Agrawal, Ankit (1)
-
Audia, Jonathon P (1)
-
Bauer, Natalie R (1)
-
Borchert, Glen M (1)
-
Brown, Cana L (1)
-
Chaudhary, Neil Y (1)
-
Chechik, Marsha (1)
-
Chowdhury, Muhammed Tawfiq (1)
-
Cleland-Huang, Jane (1)
-
Coley, Alexander B (1)
-
DeMeis, Jeffrey D (1)
-
Foster, John W (1)
-
Ghee, Kanesha R (1)
-
Hewes, Jenny L (1)
-
Hobbs, Trevor K (1)
-
Houserova, Dominika (1)
-
Huang, Jingshan (1)
-
Huang, Yulong (1)
-
Islam, Md Nafee (1)
-
Johns, Nolan P (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In emergency response scenarios, autonomous small Unmanned Aerial Systems (sUAS) must be configured and deployed quickly and safely to perform mission-specific tasks. In this paper, we present \DR, a Software Product Line for rapidly configuring and deploying a multi-role, multi-sUAS mission whilst guaranteeing a set of safety properties related to the sequencing of tasks within the mission. Individual sUAS behavior is governed by an onboard state machine, combined with coordination handlers which are configured dynamically within seconds of launch and ultimately determine the sUAS' behaviors, transition decisions, and interactions with other sUAS, as well as human operators. The just-in-time manner in which missions are configured precludes robust upfront testing of all conceivable combinations of features -- both within individual sUAS and across cohorts of collaborating ones. To ensure the absence of common types of configuration failures and to promote safe deployments, we check vital properties of the dynamically generated sUAS specifications and coordination handlers before sUAS are assigned their missions. We evaluate our approach in two ways. First, we perform validation tests to show that the end-to-end configuration process results in correctly executed missions, and second, we apply fault-based mutation testing to show that our safety checks successfully detect incorrect task sequences.more » « less
-
Houserova, Dominika; Huang, Yulong; Kasukurthi, Mohan V; Watters, Brianna C; Khan, Fiza F; Mehta, Raj V; Chaudhary, Neil Y; Roberts, Justin T; DeMeis, Jeffrey D; Hobbs, Trevor K; et al (, bioRxiv)ABSTRACT SalmonellaOuter Membrane Vesicles (OMVs) were recently shown to inhibit P22 bacteriophage infection. Furthermore, despite there being several published reports now independently describing (1) the marked prevalence of tRFs within secreted vesicle transcriptomes and (2) roles for specific tRFs in facilitating/inhibiting viral replication, there have been no examinations of the effects of vesicle-secreted tRFs on viral infection reported to date. Notably, while specific tRFs have been reported in a number of bacteria, the tRFs expressed by salmonellae have not been previously characterized. As such, we recently screened small RNA-seq datasets for the presence of recurrent, specifically excised tRFs and identified 31 recurrent, relatively abundant tRFs expressed bySalmonella entericaserovar Typhimurium (SL1344). What’s more, we findS. Typhimurium OMVs contain significant levels of tRFs highly complementary to knownSalmonella enterica-infecting bacteriophage with 17 of 31 tRFs bearing marked complementarity to at least one knownSalmonella enterica-infecting phage (averaging 97.4% complementarity over 22.9 nt). Most notably, tRNA-Thr-CGT-1-1, 44-73, bears 100% sequence complementary over its entire 30 nt length to 29 distinct, annotatedSalmonella enterica-infecting bacteriophage including P22. Importantly, we find inhibiting this tRF in secreted OMVs improves P22 infectivity in a dose dependent manner whereas raising OMV tRF levels conversely inhibits P22 infectivity. Furthermore, we find P22 phage pre-incubation with OMVs isolated from naïve, control SL1344S. Typhimurium, successfully rescues the ability ofS. Typhimurium transformed with a specific tRNA-Thr-CGT-1-1, 44-73 tRF inhibitor to defend against P22. Collectively, these experiments confirm tRFs secreted inS. Typhimurium OMVs are directly involved with and required for the ability of OMVs to defend against bacteriophage predation. As we find the majority of OMV tRFs are highly complementary to an array of knownSalmonella enterica-infecting bacteriophage, we suggest OMV tRFs may primarily function as a broadly acting, previously uncharacterized innate antiviral defense.more » « less
An official website of the United States government
