Small uncrewed aerial systems, sUAS, provide an invaluable resource for performing a variety of surveillance, search, and delivery tasks in remote or hostile terrains which may not be accessible by other means. Due to the critical role sUAS play in these situations, it is vital that they are well configured in order to ensure a safe and stable flight. However, it is not uncommon for mistakes to occur in configuration and calibration, leading to failures or incomplete missions. To address this problem, we propose a set of self-adaptive mechanisms and implement them into a self-adaptive framework, CICADA, for Controller Instability-preventing Configuration Aware Drone Adaptation. CICADA dynamically detects unstable drone behavior during flight and adapts to mitigate this threat. We have built a prototype of CICADA using a popular open source sUAS simulator and experimented with a large number of different configurations. Experimental results show that CICADA’s adaptations reduce controller instability and enable the sUAS to recover from a significant number of poor configurations. In cases where we cannot complete the intended mission, invoking alternative adaptations may still help by allowing the vehicle to loiter or land safely in place, avoiding potentially catastrophic crashes.
more »
« less
Configuring mission-specific behavior in a product line of collaborating Small Unmanned Aerial Systems
In emergency response scenarios, autonomous small Unmanned Aerial Systems (sUAS) must be configured and deployed quickly and safely to perform mission-specific tasks. In this paper, we present \DR, a Software Product Line for rapidly configuring and deploying a multi-role, multi-sUAS mission whilst guaranteeing a set of safety properties related to the sequencing of tasks within the mission. Individual sUAS behavior is governed by an onboard state machine, combined with coordination handlers which are configured dynamically within seconds of launch and ultimately determine the sUAS' behaviors, transition decisions, and interactions with other sUAS, as well as human operators. The just-in-time manner in which missions are configured precludes robust upfront testing of all conceivable combinations of features -- both within individual sUAS and across cohorts of collaborating ones. To ensure the absence of common types of configuration failures and to promote safe deployments, we check vital properties of the dynamically generated sUAS specifications and coordination handlers before sUAS are assigned their missions. We evaluate our approach in two ways. First, we perform validation tests to show that the end-to-end configuration process results in correctly executed missions, and second, we apply fault-based mutation testing to show that our safety checks successfully detect incorrect task sequences.
more »
« less
- Award ID(s):
- 1931962
- PAR ID:
- 10468149
- Publisher / Repository:
- Journal of Systems and Software
- Date Published:
- Journal Name:
- Journal of Systems and Software
- Volume:
- 197
- Issue:
- C
- ISSN:
- 0164-1212
- Page Range / eLocation ID:
- 111543
- Subject(s) / Keyword(s):
- Dynamic Configuration, Small Unmanned Aerial System, sUAS, Emergency Response, Product Line
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Small uncrewed aerial systems, sUAS, provide an invaluable resource for performing a variety of surveillance, search, and delivery tasks in remote or hostile terrains which may not be accessible by other means. Due to the critical role sUAS play in these situations, it is vital that they are well configured in order to ensure a safe and stable flight. However, it is not uncommon for mistakes to occur in configuration and calibration, leading to failures or incomplete missions. To address this problem, we propose a set of self-adaptive mechanisms and implement them into a self-adaptive framework,CICADA, for Controller Instability-preventing Configuration Aware Drone Adaptation.CICADAdynamically detects unstable drone behavior during flight and adapts to mitigate this threat. We have built a prototype ofCICADAusing a popular open source sUAS flight control software and experimented with a large number of different configurations in simulation. We then performed a case study with physical drones to determine if our framework will work in practice. Experimental results show thatCICADA’sadaptations reduce controller instability and enable the sUAS to recover from up to 33.8% of poor configurations. In cases where we cannot complete the intended mission, invoking alternative adaptations may still help by allowing the vehicle to loiter or land safely in place, avoiding potentially catastrophic crashes. These safety-focused adaptations can mitigate unsafe behavior in 52.9% to 64.7% of dangerous configurations. We further show that rule-based approaches can be leveraged to automatically select an appropriate adaptation strategy based on the severity of instability encountered, with up to a 14.2% improvement over direct adaptation. Finally, we introduce a variation of our primary adaptation strategy designed to allow more cautious adaptation with limited configuration information, which gets within 6.7% of our primary adaptation strategy despite not requiring an optimal knowledge base.more » « less
-
Flight-time failures of small Uncrewed Aerial Systems (sUAS) can have a severe impact on people or the environment. Therefore, sUAS applications must be thoroughly evaluated and tested to ensure their adherence to specified requirements, and safe behavior under real-world conditions, such as poor weather, wireless interference, and satellite failure. However, current simulation environments for autonomous vehicles, including sUAS, provide limited support for validating their behavior in diverse environmental contexts and moreover, lack a test harness to facilitate structured testing based on system-level requirements. We address these shortcomings by eliciting and specifying requirements for an sUAS testing and simulation platform, and developing and deploying it. The constructed platform, DroneWorld (\DW), allows sUAS developers to define the operating context, configure multi-sUAS mission requirements, specify safety properties, and deploy their own custom sUAS applications in a high-fidelity 3D environment. The DroneWorld Monitoring system collects runtime data from sUAS and the environment, analyzes compliance with safety properties, and captures violations. We report on two case studies in which we used our platform prior to real-world sUAS deployments, in order to evaluate sUAS mission behavior in various environmental contexts. Furthermore, we conducted a study with developers and found that DroneWorld simplifies the process of specifying requirements-driven test scenarios and analyzing acceptance test results.more » « less
-
Autonomous systems, such as Unmanned Aerial Vehicles (UAVs), are expected to run complex reinforcement learning (RL) models to execute fully autonomous positionnavigation-time tasks within stringent onboard weight and power constraints. We observe that reducing onboard operating voltage can benefit the energy efficiency of both the computation and flight mission, however, it can also result in on-chip bit failures that are detrimental to mission safety and performance. To this end, we propose BERRY, a robust learning framework to improve bit error robustness and energy efficiency for RL-enabled autonomous systems. BERRY supports robust learning, both offline and on-board the UAV, and for the first time, demonstrates the practicality of robust low-voltage operation on UAVs that leads to high energy savings in both compute-level operation and systemlevel quality-of-flight. We perform extensive experiments on 72 autonomous navigation scenarios and demonstrate that BERRY generalizes well across environments, UAVs, autonomy policies, operating voltages and fault patterns, and consistently improves robustness, efficiency and mission performance, achieving up to 15.62% reduction in flight energy, 18.51% increase in the number of successful missions, and 3.43× processing energy reduction.more » « less
-
Computer Vision (CV) is used in a broad range of Cyber-Physical Systems such as surgical and factory floor robots and autonomous vehicles including small Unmanned Aerial Systems (sUAS). It enables machines to perceive the world by detecting and classifying objects of interest, reconstructing 3D scenes, estimating motion, and maneuvering around objects. CV algorithms are developed using diverse machine learning and deep learning frameworks, which are often deployed on limited resource edge devices. As sUAS rely upon an accurate and timely perception of their environment to perform critical tasks, problems related to CV can create hazardous conditions leading to crashes or mission failure. In this paper, we perform a systematic literature review (SLR) of CV-related challenges associated with CV, hardware, and software engineering. We then group the reported challenges into five categories and fourteen sub-challenges and present existing solutions. As current literature focuses primarily on CV and hardware challenges, we close by discussing implications for Software Engineering, drawing examples from a CV-enhanced multi-sUAS system.more » « less
An official website of the United States government

