Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Emerging brain-inspired hyperdimensional computing (HDC) algorithms are vulnerable to timing and soft errors in associative memory used to store high-dimensional data representations. Such errors can significantly degrade HDC performance. A key challenge is error correction after an error in computation is detected. This work presents two novel error resilience frameworks for hyperdimensional computing systems. The first, called the checksum hypervector encoding (CHE) framework, relies on creation of a single additional hypervector that is a checksum of all the class hypervectors of the HDC system. For error resilience, elementwise validation of the checksum property is performed and those elements across all class vectors for which the property fails are removed from consideration. For an HDC system with K class hypervectors of dimension D, the second cross-hypervector clustering (CHC) framework clusters D, Kdimensional vectors consisting of the i-th element of each of the K HDC class hypervectors, 1 ≤ i ≤ K. Statistical properties of these vector clusters are checked prior to each hypervector query and all the elements of all K-dimensional vectors corresponding to statistical outlier vectors are removed as before. The choice of which framework to use is dictated by the complexity of the dataset to classify. Up to three orders of magnitude better resilience to errors than the state-of-the-art across multiple HDC high-dimensional encoding (representation) systems is demonstrated.more » « less
-
Brain-inspired hyperdimensional (HD) computing models mimic cognition through combinatorial bindings of biological neuronal data represented by high-dimensional vectors and related operations. However, the efficacy of HD computing depends strongly on input signal and data features used to realize such bindings. In this paper, we propose a new HD-computing framework based on a co-trainable DNN-based feature extractor pre-processor and a hyperdimensional computing system. When trained with restrictions on the ranges of hypervector elements for resilience to memory access errors, the framework achieves up to 135% accuracy improvement over baseline HD-computing for error-free operation and up to three orders of magnitude improvement in error resilience compared to the state-of-the-art. Results for a range of applications from image classification, face recognition, human activity recognition and medical diagnosis are presented and demonstrate the viability of the proposed ideas.more » « less
-
Deep learning techniques have been widely adopted in daily life with applications ranging from face recognition to recommender systems. The substantial overhead of conventional error tolerance techniques precludes their widespread use, while approaches involving median filtering and invariant generation rely on alterations to DNN training that may be difficult to achieve for larger networks on larger datasets. To address this issue, this paper presents a novel approach taking advantage of the statistics of neuron output gradients to identify and suppress erroneous neuron values. By using the statistics of neurons’ gradients with respect to their neighbors, tighter statistical thresholds are obtained compared to the use of neuron output values alone. This approach is modular and is combined with accurate, low-overhead error detection methods to ensure it is used only when needed, further reducing its cost. Deep learning models can be trained using standard methods and our error correction module is fit to a trained DNN, achieving comparable or superior performance compared to baseline error correction methods while incurring comparable hardware overhead without needing to modify DNN training or utilize specialized hardware architectures.more » « less
An official website of the United States government
