Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Portland cement emits bright near-infrared photoluminescence that can be excited by light wavelengths ranging from at least 500–1000 nm. The emission has a peak wavelength near 1140 nm and a width of approximately 30 nm. Its source is suggested to be small particles of silicon associated with calcium silicate phases. The luminescence peak wavelength appears independent of the cement hydration state, aggregates, and mechanical strain but increases weakly with increasing temperature. It varies slightly with the type of cement, suggesting a new non-contact method for identifying cement formulations. After a thin opaque coating is applied to a cement or concrete surface, subsequent formation of microcracks exposes the substrate’s near-infrared emission, revealing the fracture locations, pattern, and progression. This damage would escape detection in normal imaging inspections. Near-infrared luminescence imaging may therefore provide a new tool for non-destructive testing of cement-based structures.more » « less
-
Hierarchically porous electrodes made of electrochemically active materials and conductive additives may display synergistic effects originating from the interactions between the constituent phases, and this approach has been adopted for optimizing the performances of many electrode materials. Here we report our findings in design, fabrication, and characterization of a hierarchically porous hybrid electrode composed of α-NiS nanorods decorated on reduced graphene oxide (rGO) (denoted as R-NiS/rGO), derived from water-refluxed metal–organic frameworks/rGO (Ni-MOF-74/rGO) templates. Microanalyses reveal that the as-synthesized α-NiS nanorods have abundant (101) and (110) surfaces on the edges, which exhibit a strong affinity for OH − in KOH electrolyte, as confirmed by density functional theory-based calculations. The results suggest that the MOF-derived α-NiS nanorods with highly exposed active surfaces are favorable for fast redox reactions in a basic electrolyte. Besides, the presence of rGO in the hybrid electrode greatly enhances the electronic conductivity, providing efficient current collection for fast energy storage. Indeed, when tested in a supercapacitor with a three-electrode configuration in 2 M KOH electrolyte, the R-NiS/rGO hybrid electrode exhibits a capacity of 744 C g −1 at 1 A g −1 and 600 C g −1 at 50 A g −1 , indicating remarkable rate performance, while maintaining more than 89% of the initial capacity after 20 000 cycles. Moreover, when coupled with a nitrogen-doped graphene aerogel (C/NG-A) negative electrode, the hybrid supercapacitor (R-NiS/rGO/electrolyte/C/NG-A) achieved an ultra-high energy density of 93 W h kg −1 at a power density of 962 W kg −1 , while still retaining an energy density of 54 W h kg −1 at an elevated working power of 46 034 W kg −1 .more » « less
An official website of the United States government
