Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2024
-
Abstract Research on intertidal community structure and recovery in the California Current System has largely focused on macrophytes and invertebrates occupying two‐dimensional, readily studied “open” rock surfaces. However, most rocky shores have a “third” dimension that includes channels, cracks, crevices, and overhangs whose organismal assemblages, termed “cryptic communities,” are poorly studied. Cryptic communities not only share many species with those on more accessible surfaces but also include high abundances of colonial invertebrates such as tunicates, sponges, bryozoans, and hydrozoans. We investigated species abundance and diversity of cryptic communities and tested their recovery from disturbance by comparing removal plots to undisturbed controls for ~1.5 years. Additionally, we tested whether community structure and recovery varied with contrasting large‐scale levels of ecological subsidies (invertebrate recruitment, nutrients, and phytoplankton) and local‐scale microhabitat differences (emersion and solar irradiation) on the Oregon Coast. We compared cryptic recovery rates to recovery rates on open‐surface communities. In cryptic communities, site explained most (92%) variance in community structure of undisturbed plots, while microhabitat metrics had little (1.2%) effect. Further, recovery rates were faster at a site with higher subsidy inputs than one with lower subsidies in both cryptic and noncryptic communities. Hence, larger scale environmental drivers appeared more important than local‐scale drivers within cryptic communities. Our research provides novel insight into intertidal cryptic surge channel community structure and dynamics.
-
Climate change threatens to destabilize ecological communities, potentially moving them from persistently occupied “basins of attraction” to different states. Increasing variation in key ecological processes can signal impending state shifts in ecosystems. In a rocky intertidal meta-ecosystem consisting of three distinct regions spread across 260 km of the Oregon coast, we show that annually cleared sites are characterized by communities that exhibit signs of increasing destabilization (loss of resilience) over the past decade despite persistent community states. In all cases, recovery rates slowed and became more variable over time. The conditions underlying these shifts appear to be external to the system, with thermal disruptions (e.g., marine heat waves, El Niño–Southern Oscillation) and shifts in ocean currents (e.g., upwelling) being the likely proximate drivers. Although this iconic ecosystem has long appeared resistant to stress, the evidence suggests that subtle destabilization has occurred over at least the last decade.more » « less
-
Griffen, Blaine D. (Ed.)Ocean acidification (OA) represents a serious challenge to marine ecosystems. Laboratory studies addressing OA indicate broadly negative effects for marine organisms, particularly those relying on calcification processes. Growing evidence also suggests OA combined with other environmental stressors may be even more deleterious. Scaling these laboratory studies to ecological performance in the field, where environmental heterogeneity may mediate responses, is a critical next step toward understanding OA impacts on natural communities. We leveraged an upwelling-driven pH mosaic along the California Current System to deconstruct the relative influences of pH, ocean temperature, and food availability on seasonal growth, condition and shell thickness of the ecologically dominant intertidal mussel Mytilus californianus. In 2011 and 2012, ecological performance of adult mussels from local and commonly sourced populations was measured at 8 rocky intertidal sites between central Oregon and southern California. Sites coincided with a large-scale network of intertidal pH sensors, allowing comparisons among pH and other environmental stressors. Adult California mussel growth and size varied latitudinally among sites and inter-annually, and mean shell thickness index and shell weight growth were reduced with low pH. Surprisingly, shell length growth and the ratio of tissue to shell weight were enhanced, not diminished as expected, by low pH. In contrast, and as expected, shell weight growth and shell thickness were both diminished by low pH, consistent with the idea that OA exposure can compromise shell-dependent defenses against predators or wave forces. We also found that adult mussel shell weight growth and relative tissue mass were negatively associated with increased pH variability. Including local pH conditions with previously documented influences of ocean temperature, food availability, aerial exposure, and origin site enhanced the explanatory power of models describing observed performance differences. Responses of local mussel populations differed from those of a common source population suggesting mussel performance partially depended on genetic or persistent phenotypic differences. In light of prior research showing deleterious effects of low pH on larval mussels, our results suggest a life history transition leading to greater resilience in at least some performance metrics to ocean acidification by adult California mussels. Our data also demonstrate “hot” (more extreme) and “cold” (less extreme) spots in both mussel responses and environmental conditions, a pattern that may enable mitigation approaches in response to future changes in climate.more » « less