Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We prove two compactness results for function spaces with finite Dirichlet energy of half‐space nonlocal gradients. In each of these results, we provide sufficient conditions on a sequence of kernel functions that guarantee the asymptotic compact embedding of the associated nonlocal function spaces into the class of square‐integrable functions. Moreover, we will demonstrate that the sequence of nonlocal function spaces converges in an appropriate sense to a limiting function space. As an application, we prove uniform Poincaré‐type inequalities for sequence of half‐space gradient operators. We also apply the compactness result to demonstrate the convergence of appropriately parameterized nonlocal heterogeneous anisotropic diffusion problems. We will construct asymptotically compatible schemes for these type of problems. Another application concerns the convergence and robust discretization of a nonlocal optimal control problem.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract We extend the Calderón–Zygmund theory for nonlocal equations tostrongly coupled system of linear nonlocal equations {\mathcal{L}^{s}_{A}u=f}, where the operator {\mathcal{L}^{s}_{A}}is formally given by \mathcal{L}^{s}_{A}u=\int_{\mathbb{R}^{n}}\frac{A(x,y)}{|x-y|^{n+2s}}\frac{(x-%y)\otimes(x-y)}{|x-y|^{2}}(u(x)-u(y))\,dy. For {0more » « less
<1}and {A:\mathbb{R}^{n}\times\mathbb{R}^{n}\to\mathbb{R}}taken to be symmetric and serving asa variable coefficient for the operator, the system under consideration is the fractional version of the classical Navier–Lamé linearized elasticity system. The study of the coupled system of nonlocal equations is motivated by its appearance in nonlocal mechanics, primarily in peridynamics. Our regularity result states that if {A(\,\cdot\,,y)}is uniformly Holder continuous and {\inf_{x\in\mathbb{R}^{n}}A(x,x)>0}, then for {f\in L^{p}_{\rm loc}}, for {p\geq 2}, the solution vector {u\in H^{2s-\delta,p}_{\rm loc}}for some {\delta\in(0,s)}.Free, publicly-accessible full text available November 17, 2025 -
Free, publicly-accessible full text available July 1, 2025
-
We study a non-local optimal control problem involving a linear, bond-based peridynamics model. In addition to existence and uniqueness of solutions to our problem, we investigate their behavior as the horizon parameter 𝛿, which controls the degree of nonlocality, approaches zero. We then study a finite element-based discretization of this problem, its convergence, and the so-called asymptotic compatibility as the discretization parameter h and the horizon parameter 𝛿 tend to zero simultaneously.more » « less
-
Mengesha, Tadele; Salgado, Abner J. (Ed.)In this note, we prove an estimate on the level sets of a function with (𝑝,𝑞) growth that depends on the difference quotient of a bounded weak solution to a nonlocal double-phase equation. This estimate is related to a self-improving property of these solutions.more » « less
-
Motivated by some variational problems from a nonlocal model of mechanics, this work presents a set of sufficient conditions that guarantee a compact inclusion in the function space of $$ L^{p} $$ vector fields defined on a domain $$ \Omega $$ that is either a bounded domain in $$ \mathbb{R}^{d} $$ or $$ \mathbb{R}^{d} $$ itself. The criteria are nonlocal and are given with respect to nonlocal interaction kernels that may not be necessarily radially symmetric. Moreover, these criteria for vector fields are also different from those given for scalar fields in that the conditions are based on nonlocal interactions involving only parts of the components of the vector fields. The $$ L^{p} $$ compactness criteria are utilized in demonstrating the convergence of minimizers of parameterized nonlocal energy functionals.more » « less
-
This work aims to prove a Hardy-type inequality and a trace theorem for a class of function spaces on smooth domains with a nonlocal character. Functions in these spaces are allowed to be as rough as an [Formula: see text]-function inside the domain of definition but as smooth as a [Formula: see text]-function near the boundary. This feature is captured by a norm that is characterized by a nonlocal interaction kernel defined heterogeneously with a special localization feature on the boundary. Thus, the trace theorem we obtain here can be viewed as an improvement and refinement of the classical trace theorem for fractional Sobolev spaces [Formula: see text]. Similarly, the Hardy-type inequalities we establish for functions that vanish on the boundary show that functions in this generalized space have the same decay rate to the boundary as functions in the smaller space [Formula: see text]. The results we prove extend existing results shown in the Hilbert space setting with p = 2. A Poincaré-type inequality we establish for the function space under consideration together with the new trace theorem allows formulating and proving well-posedness of a nonlinear nonlocal variational problem with conventional local boundary condition.more » « less