skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: $ L^{p} $ compactness criteria with an application to variational convergence of some nonlocal energy functionals
Motivated by some variational problems from a nonlocal model of mechanics, this work presents a set of sufficient conditions that guarantee a compact inclusion in the function space of $$ L^{p} $$ vector fields defined on a domain $$ \Omega $$ that is either a bounded domain in $$ \mathbb{R}^{d} $$ or $$ \mathbb{R}^{d} $$ itself. The criteria are nonlocal and are given with respect to nonlocal interaction kernels that may not be necessarily radially symmetric. Moreover, these criteria for vector fields are also different from those given for scalar fields in that the conditions are based on nonlocal interactions involving only parts of the components of the vector fields. The $$ L^{p} $$ compactness criteria are utilized in demonstrating the convergence of minimizers of parameterized nonlocal energy functionals.  more » « less
Award ID(s):
2111608 2240180 2309245 1922234 2206252
PAR ID:
10517382
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIMS press
Date Published:
Journal Name:
Mathematics in Engineering
Volume:
5
Issue:
6
ISSN:
2640-3501
Page Range / eLocation ID:
1 to 31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this work we study d-dimensional majorant properties. We prove that a set of frequencies in $$\mathbb{Z}^d$$ satisfies the strict majorant property on $L^p([0,1]^d)$ for all p > 0 if and only if the set is affinely independent. We further construct three types of violations of the strict majorant property. Any set of at least d + 2 frequencies in $$\mathbb{Z}^d$$ violates the strict majorant property on $L^p([0,1]^d)$ for an open interval of $$p \not\in 2\mathbb{N}$$ of length 2. Any infinite set of frequencies in $$\mathbb{Z}^d$$ violates the strict majorant property on $L^p([0,1]^d)$ for an infinite sequence of open intervals of $$p \not\in 2\mathbb{N}$$ of length 2. Finally, given any p > 0 with $$p \not\in 2\mathbb{N}$$, we exhibit a set of d + 2 frequencies on the moment curve in $$\mathbb{R}^d$$ that violate the strict majorant property on $L^p([0,1]^d).$ 
    more » « less
  2. Abstract We construct a single smooth orthogonal projection with desired localization whose average under a group action yields the decomposition of the identity operator. For any full rank lattice $$\Gamma \subset \mathbb {R}^d$$ Γ ⊂ R d , a smooth projection is localized in a neighborhood of an arbitrary precompact fundamental domain $$\mathbb {R}^d/\Gamma $$ R d / Γ . We also show the existence of a highly localized smooth orthogonal projection, whose Marcinkiewicz average under the action of SO ( d ), is a multiple of the identity on $$L^2(\mathbb {S}^{d-1})$$ L 2 ( S d - 1 ) . As an application we construct highly localized continuous Parseval frames on the sphere. 
    more » « less
  3. null (Ed.)
    Abstract We consider the inequality $$f \geqslant f\star f$$ for real functions in $$L^1({\mathbb{R}}^d)$$ where $$f\star f$$ denotes the convolution of $$f$$ with itself. We show that all such functions $$f$$ are nonnegative, which is not the case for the same inequality in $L^p$ for any $$1 < p \leqslant 2$$, for which the convolution is defined. We also show that all solutions in $$L^1({\mathbb{R}}^d)$$ satisfy $$\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x \leqslant \tfrac 12$$. Moreover, if $$\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$$, then $$f$$ must decay fairly slowly: $$\int _{{\mathbb{R}}^{\textrm{d}}}|x| f(x)\ \textrm{d}x = \infty $$, and this is sharp since for all $r< 1$, there are solutions with $$\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$$ and $$\int _{{\mathbb{R}}^{\textrm{d}}}|x|^r f(x)\ \textrm{d}x <\infty $$. However, if $$\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x =: a < \tfrac 12$$, the decay at infinity can be much more rapid: we show that for all $$a<\tfrac 12$$, there are solutions such that for some $$\varepsilon>0$$, $$\int _{{\mathbb{R}}^{\textrm{d}}}e^{\varepsilon |x|}f(x)\ \textrm{d}x < \infty $$. 
    more » « less
  4. We study a class of second-order degenerate linear parabolic equations in divergence form in ( − ∞ , T ) × R + d (-\infty , T) \times {\mathbb {R}}^d_+ with homogeneous Dirichlet boundary condition on ( − ∞ , T ) × ∂ R + d (-\infty , T) \times \partial {\mathbb {R}}^d_+ , where R + d = { x ∈ R d : x d > 0 } {\mathbb {R}}^d_+ = \{x \in {\mathbb {R}}^d: x_d>0\} and T ∈ ( − ∞ , ∞ ] T\in {(-\infty , \infty ]} is given. The coefficient matrices of the equations are the product of μ ( x d ) \mu (x_d) and bounded uniformly elliptic matrices, where μ ( x d ) \mu (x_d) behaves like x d α x_d^\alpha for some given α ∈ ( 0 , 2 ) \alpha \in (0,2) , which are degenerate on the boundary { x d = 0 } \{x_d=0\} of the domain. Our main motivation comes from the analysis of degenerate viscous Hamilton-Jacobi equations. Under a partially VMO assumption on the coefficients, we obtain the well-posedness and regularity of solutions in weighted Sobolev spaces. Our results can be readily extended to systems. 
    more » « less
  5. We obtain Weyl type asymptotics for the quantised derivative \dj \mkern 1muf of a function f f from the homgeneous Sobolev space W ˙ d 1 ( R d ) \dot {W}^1_d(\mathbb {R}^d) on R d . \mathbb {R}^d. The asymptotic coefficient ‖ ∇ f ‖ L d ( R d ) \|\nabla f\|_{L_d(\mathbb R^d)} is equivalent to the norm of \dj \mkern 1muf in the principal ideal L d , ∞ , \mathcal {L}_{d,\infty }, thus, providing a non-asymptotic, uniform bound on the spectrum of \dj \mkern 1muf. Our methods are based on the C ∗ C^{\ast } -algebraic notion of the principal symbol mapping on R d \mathbb {R}^d , as developed recently by the last two authors and collaborators. 
    more » « less