Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Number sense, the ability to decipher quantity, forms the foundation for mathematical cognition. How number sense emerges with learning is, however, not known. Here we use a biologically-inspired neural architecture comprising cortical layers V1, V2, V3, and intraparietal sulcus (IPS) to investigate how neural representations change with numerosity training. Learning dramatically reorganized neuronal tuning properties at both the single unit and population levels, resulting in the emergence of sharply-tuned representations of numerosity in the IPS layer. Ablation analysis revealed that spontaneous number neurons observed prior to learning were not critical to formation of number representations post-learning. Crucially, multidimensional scaling of population responses revealed the emergence of absolute and relative magnitude representations of quantity, including mid-point anchoring. These learnt representations may underlie changes from logarithmic to cyclic and linear mental number lines that are characteristic of number sense development in humans. Our findings elucidate mechanisms by which learning builds novel representations supporting number sense.more » « lessFree, publicly-accessible full text available December 1, 2024
-
Free, publicly-accessible full text available February 21, 2025
-
Abstract We show that coherent laser networks (CLNs) exhibit emergent neural computing capabilities. The proposed scheme is built on harnessing the collective behavior of laser networks for storing a number of phase patterns as stable fixed points of the governing dynamical equations and retrieving such patterns through proper excitation conditions, thus exhibiting an associative memory property. It is discussed that despite the large storage capacity of the network, the large overlap between fixed-point patterns effectively limits pattern retrieval to only two images. Next, we show that this restriction can be uplifted by using nonreciprocal coupling between lasers and this allows for utilizing a large storage capacity. This work opens new possibilities for neural computation with coherent laser networks as novel analog processors. In addition, the underlying dynamical model discussed here suggests a novel energy-based recurrent neural network that handles continuous data as opposed to Hopfield networks and Boltzmann machines that are intrinsically binary systems.more » « less
-
Abstract Anisotropic planar polaritons - hybrid electromagnetic modes mediated by phonons, plasmons, or excitons - in biaxial two-dimensional (2D) van der Waals crystals have attracted significant attention due to their fundamental physics and potential nanophotonic applications. In this Perspective, we review the properties of planar hyperbolic polaritons and the variety of methods that can be used to experimentally tune them. We argue that such natural, planar hyperbolic media should be fairly common in biaxial and uniaxial 2D and 1D van der Waals crystals, and identify the untapped opportunities they could enable for functional (i.e. ferromagnetic, ferroelectric, and piezoelectric) polaritons. Lastly, we provide our perspectives on the technological applications of such planar hyperbolic polaritons.
-
In addition to their attractive technological applications in photovoltaics and light emitters, the perovskite family of semiconductors has recently emerged as an excellent excitonic material for fundamental studies. Specifically, the 2D hybrid organic-inorganic perovskite (HOIP) offers the added advantage of room temperature investigations owing to their large exciton binding energy. In this work, we strongly couple excitons in 2D HOIP crystals to planar microcavity photons sustaining exciton-polaritons under ambient conditions resulting in a Rabi splitting of 290 meV. Dark excitons directly pump the polariton branch along its dispersion in resonance with the Stokes shifted emission state (radiative pumping), creating a high density of polaritons at higher in-plane momentum (
k ||). We further probe the nonlinear polariton dispersion dynamics at varying input laser fluence, which indicates efficient polariton-polariton scattering and decay tok || = 0 from higherk ||. The observation of Stokes shift-assisted energy exchange of dark states with lower polaritons coupled with evidence of efficient polariton-polariton scattering makes 2D HOIPs an attractive platform to study exciton-polariton many-body physics and Bose-Einstein like condensation (BEC) at room temperature. -
Abstract Number sense is fundamental to the development of numerical problem‐solving skills. In early childhood, children establish associations between non‐symbolic (e.g., a set of dots) and symbolic (e.g., Arabic numerals) representations of quantity. The developmental estrangement theory proposes that the relationship between non‐symbolic and symbolic representations of quantity evolves with age, with increased dissociation across development. Consistent with this theory, recent research suggests that cross‐format neural representational similarity (NRS) between non‐symbolic and symbolic quantities is correlated with arithmetic fluency in children but not in adolescents. However, it is not known if short‐term training (STT) can induce similar changes as long‐term development. In this study, children aged 7–10 years underwent a theoretically motivated 4‐week number sense training. Using multivariate neural pattern analysis, we investigated whether short‐term learning could modify the relation between cross‐format NRS and arithmetic skills. Our results revealed a significant correlation between cross‐format NRS and arithmetic fluency in distributed brain regions, including the parietal and prefrontal cortices, prior to training. However, this association was no longer observed after training, and multivariate predictive models confirmed these findings. Our findings provide evidence that intensive STT during early childhood can promote behavioral improvements and neural plasticity that resemble and recapitulate long‐term neurodevelopmental changes that occur from childhood to adolescence. More generally, our study contributes to our understanding of the malleability of number sense and highlights the potential for targeted interventions to shape neurodevelopmental trajectories in early childhood.
Research Highlights We tested the hypothesis that short‐term number sense training induces the dissociation of symbolic numbers from non‐symbolic representations of quantity in children.
We leveraged a theoretically motivated intervention and multivariate pattern analysis to determine training‐induced neurocognitive changes in the relation between number sense and arithmetic problem‐solving skills.
Neural representational similarity between non‐symbolic and symbolic quantity representations was correlated with arithmetic skills before training but not after training.
Short‐term training recapitulates long‐term neurodevelopmental changes associated with numerical problem‐solving from childhood to adolescence.
-
Abstract Realizing nonlinear optical response in the low photon density limit in solid-state systems has been a long-standing challenge. Semiconductor microcavities in the strong coupling regime hosting exciton-polaritons have emerged as attractive candidates in this context. However, the weak interaction between these quasiparticles has been a hurdle in this quest. Dipolar excitons provide an attractive strategy to overcome this limitation but are often hindered by their weak oscillator strength. The interlayer dipolar excitons in naturally occurring homobilayer MoS 2 alleviates this issue owing to their formation via hybridization of interlayer charge transfer exciton with intralayer B exciton. Here we demonstrate the formation of dipolar exciton polaritons in bilayer MoS 2 resulting in unprecedented nonlinear interaction strengths. A ten-fold increase in nonlinearity is observed for the interlayer dipolar excitons compared to the conventional A excitons. These highly nonlinear dipolar polaritons will likely be a frontrunner in the quest for solid-state quantum nonlinear devices.more » « less
-
Strong coupling between light and elementary excitations is emerging as a powerful tool to engineer the properties of solid-state systems. Spin-correlated excitations that couple strongly to optical cavities promise control over collective quantum phenomena such as magnetic phase transitions, but their suitable electronic resonances are yet to be found. Here, we report strong light–matter coupling in NiPS3, a van der Waals antiferromagnet with highly correlated electronic degrees of freedom. A previously unobserved class of polaritonic quasiparticles emerges from the strong coupling between its spin-correlated excitons and the photons inside a microcavity. Detailed spectroscopic analysis in conjunction with a microscopic theory provides unique insights into the origin and interactions of these exotic magnetically coupled excitations. Our work introduces van der Waals magnets to the field of strong light–matter physics and provides a path towards the design and control of correlated electron systems via cavity quantum electrodynamics.more » « less