skip to main content

Search for: All records

Creators/Authors contains: "Merrill, Cameron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Objective: To examine the hypothesis that constant speed is more comfortable than variable speed profiles and may minimize cybersickness. Background: Current best practices for virtual reality (VR) content creation suggest keeping any form of acceleration as short and infrequent as possible to mitigate cybersickness. Methods: In Experiment 1, participants experienced repetitions of simulated linear motion, and in Experiment 2, they experienced repetitions of a circular motion. Three speed profiles were tested in each experiment. Each trial lasted 2 min while standing. Cybersickness was measured using the Simulator Sickness Questionnaire (SSQ) and operationally defined in terms of total severity scores. Postural stability was measured using a Wii Balance Board and operationally defined in terms of center of pressure (COP) path length. Postural measures were decomposed into anterior-posterior and medial-lateral axes and subjected to detrended fluctuation analysis. Results: For both experiments, no significant differences were observed between the three speed profiles in terms of cybersickness or postural stability, and none of the baseline postural measures could predict SSQ scores for the speed profile conditions. An axis effect was observed in both experiments such that normalized COP movement was significantly greater along the anterior-posterior axis than the medial-lateral axis. Conclusion: Results showed nomore »convincing evidence to support the common belief that constant speed is more comfortable than variable speed profiles for scenarios typical of VR applications. Application: The present findings offer guidelines for the design of locomotion techniques involving traversal in VR environments.« less
  2. While virtual reality (VR) might be effective in engaging learners with authentic and immersive learning experiences, current literature is lacking in understanding the relationship between learners’ perceived cognitive loads and motivational support. In addition, it is unclear as to how the incorporation of game-based learning strategies might impact the overall efficacy of VR for instructional purposes. The presentation reports a NSF-funded project that utilizes the HTC Vive VR system to host a game-based VR learning environment for teaching introductory archaeology classes in a US Midwestern university. The presentation will also report the results of multiple regression analyses to delineate relationships between cognitive loads and motivational components based on survey responses of 106 participants. The presentation will conclude by discussing game-based VR design opportunities and challenges in terms of the role of motivational design, design efficiencies and their unintended consequences.
  3. Virtual reality (VR) holds great potential for instructional and educational purposes as it is capable of immersing learners cognitively, physiologically, and emotionally by transcending physical limitations and boundaries, so learners can acquire experiences otherwise unattainable. A case in point is a VR learning environment that allows archaeology instructors to teach a variety of concepts and skills on archaeological fieldwork without bringing students to actual archaeological sites. A VR environment would also enable students to practice newly acquired skills in a safer and more affordable space than physically visiting the sites. VR alone, however, is insufficient to engage learners. Therefore, we identify game-based learning strategies to guide the development of the VR archaeology environment by incorporating game structure, game involvement, and game appeal into the design. The presentation reports an NSF-funded project that utilizes the HTC Vive VR system to host a game-based learning environment for teaching introductory archaeology classes in a US Midwestern university. The manuscript reports the design, development, and formative evaluation of the VR archaeology game grounded in learners’ motivational and cognitive processes. In particular, the formative evaluation findings, based on 40 participants' responses, reveal various design opportunities and challenges for designing game-based learning experience in virtual realitymore »environments.« less