skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Merrill, Nick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Like most modern software, secure messaging apps rely on third-party components to implement important app functionality. Although this practice reduces engineering costs, it also introduces the risk of inadvertent privacy breaches due to misconfiguration errors or incomplete documentation. Our research investigated secure messaging apps' usage of Google's Firebase Cloud Messaging (FCM) service to send push notifications to Android devices. We analyzed 21 popular secure messaging apps from the Google Play Store to determine what personal information these apps leak in the payload of push notifications sent via FCM. Of these apps, 11 leaked metadata, including user identifiers (10 apps), sender or recipient names (7 apps), and phone numbers (2 apps), while 4 apps leaked the actual message content. Furthermore, none of the data we observed being leaked to FCM was specifically disclosed in those apps' privacy disclosures. We also found several apps employing strategies to mitigate this privacy leakage to FCM, with varying levels of success. Of the strategies we identified, none appeared to be common, shared, or well-supported. We argue that this is fundamentally an economics problem: incentives need to be correctly aligned to motivate platforms and SDK providers to make their systems secure and private by default. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  2. The goal of this short document is to explain why recent developments in the Internet's infrastructure are problematic. As context, we note that the Internet was originally designed to provide a simple universal service - global end-to-end packet delivery - on which a wide variety of end-user applications could be built. The early Internet supported this packet-delivery service via an interconnected collection of commercial Internet Service Providers (ISPs) that we will refer to collectively as the public Internet. The Internet has fulfilled its packet-delivery mission far beyond all expectations and is now the dominant global communications infrastructure. By providing a level playing field on which new applications could be deployed, the Internet has enabled a degree of innovation that no one could have foreseen. To improve performance for some common applications, enhancements such as caching (as in content-delivery networks) have been gradually added to the Internet. The resulting performance improvements are so significant that such enhancements are now effectively necessary to meet current content delivery demands. Despite these tangible benefits, this document argues that the way these enhancements are currently deployed seriously undermines the sustainability of the public Internet and could lead to an Internet infrastructure that reaches fewer people and is largely concentrated among only a few large-scale providers. We wrote this document because we fear that these developments are now decidedly tipping the Internet's playing field towards those who can deploy these enhancements at massive scale, which in turn will limit the degree to which the future Internet can support unfettered innovation. This document begins by explaining our concerns but goes on to articulate how this unfortunate fate can be avoided. To provide more depth for those who seek it, we provide a separate addendum with further detail. 
    more » « less
  3. Artificial intelligence (AI) technologies are widely deployed in smartphone photography; and prompt-based image synthesis models have rapidly become commonplace. In this paper, we describe a Research-through-Design (RtD) project which explores this shift in the means and modes of image production via the creation and use of the Entoptic Field Camera. Entoptic phenomena usually refer to perceptions of floaters or bright blue dots stemming from the physiological interplay of the eye and brain. We use the term entoptic as a metaphor to investigate how the material interplay of data and models in AI technologies shapes human experiences of reality. Through our case study using first-person design and a field study, we offer implications for critical, reflective, more-than-human and ludic design to engage AI technologies; the conceptualisation of an RtD research space which contributes to AI literacy discourses; and outline a research trajectory concerning materiality and design affordances of AI technologies. 
    more » « less
  4. null (Ed.)
  5. This one-day workshop aims to explore ubiquitous privacy research and design in the context of mobile and IoT by facilitating discourse among scholars from the networked privacy and design communities. The complexity in modern socio-technical systems points to the potential of utilizing various design techniques (e.g., speculative design, design fiction, and research through design practices) in surfacing the potential consequences of novel technologies, particularly those that traditional user studies may not reveal. The results will shed light on future privacy designs for mobile and IoT technologies from both empirical and design perspectives. 
    more » « less